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Abstract. For the purposes of accuracy and speed in industrial inspection, many com-
panies heavily depend on human resources rather than automated systems. Nowadays,
the most accurate method of image classification is deep learning. As demonstrated in
ImageNet challenge, there is still no method that outperforms deep learning. Therefore,
for automatic detection of defective gears, we propose the use of deep learning with two
kinds of classification approaches, namely the Näıve approach and the fine-grained ap-
proach. The Näıve approach allows deep convolutional neural networks (CNN) to directly
classify defects and non-defects in gear images, whereas the fine-grained approach har-
nesses an image processing technique before using CNN. Our experimental results show
that there is a tradeoff between these two approaches: the Näıve approach is better in
terms of processing time while the fine-grained approach is better in terms of accuracy.
Keywords: Defect detection, Classification, Deep convolutional neural networks, Image
processing

1. Introduction. Maximization of factory throughput is the goal of every manufactur-
ing company. However, this cannot be achieved if non-defective products are classified
as defective. Inspection for detection of defective products can be performed manually
by humans and/or automatically with the help of sensors and computer programs. In
the semiconductor industry and others that require high precision, manual inspection is
deemed to be inadequate since products might be too small or too dangerous for humans
to adequately inspect. One of the branches of computer science, computer (machine)
vision has developed computers with “human-like” vision. Indeed, image recognition is
a computer vision technology that can be used in machine vision inspection systems for
inspection and labeling of images.

With machine vision inspection systems, images are classified as defective or normal
(non-defective) with higher precision than is possible with manual inspection. The most
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widely utilized methods of machine vision inspection are neural networks and deep learn-
ing. Initially, in 2012 with AlexNet [1], deep convolutional neural networks (CNN) was
utilized to obtain a 15.4% top-5-tests error rate, a groundbreaking achievement at that
time. Next, in 2013 ZF Net [8] was used to obtain an even lower, 11.2% error rate. In 2014
and 2015, error rates of 7.3% and 6.7% were achieved with VGG Net [7] and GoogleNet
[2] respectively. Finally, in 2016, Microsoft ResNet [6] could bring down the error rate
further to 3.6%. Such improvements in image recognition and classification (relative to
the human error rate which ranges between 5% and 10%), were made possible by the
design architecture typified by CNN. Some experiments have determined network layer
numbers [2,3,5,7], while another study has designed a residual block for maintenance of
vanishing/exploding gradients [6].

2. Problem Statement and Preliminaries. In this paper, we are dealing with gear
images, which have several specific constraints. First, a “defective” or “non-defective” gear
is determined by images displaying eight rectangular boxes, as shown in Figure 1. If any
of those boxes indicates a defect, the gear will be categorized as defective and vice versa.
Second, it is sometimes difficult to distinguish defective from non-defectivegear images at
a glance. Third, the light intensities and sizes of the eight rectangular boxes differ: metal
objects, when imaged by a camera, show reflections when captured by a camera, the
rectangular boxes in the center tend to appear larger than those in the corners when the
camera location is front and center. The key defect characteristics identified in this study
were edge-hole, scratch, bump, chunks, and asymmetry. An edge-hole defect is indicated
by a rectangular box showing one or more holes at the edge (refer to Figures 2(b1) and
2(b2)); a scratch defect, by a box showing a horizontal or vertical scratch (Figures 2(c1)
and 2(c2)); a bump defect, by a box showing one or more bumps (Figures 2(d1) and
2(d2)); chunks, by a box showing breakage with one or more small chunks (Figures 2(e1)

Figure 1. Overall gear images. Left: non-defective gear. Center: non-
defective gear. Right: defective gear (note that the second upper rectangle
from the right has scratch in its bottom-right corner).

Figure 2. Important gear characteristics determining defective or non-
defective status: (a) normal (non-defective), (b) edge-hole, (c) scratch, (d)
bump, (e) chunks, (f) asymmetry
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and 2(e2)) and asymmetry, by a box having a shape that is not symmetric (Figures 2(f1)
and 2(f2)).

This paper is organized as follows. Section 3 presents the related work. Sections 4 and
5 discuss the proposed method and experimental results, respectively. Finally, Section 6
draws conclusions.

3. Related Works. Given our problem wherein several rectangular boxes are to be
identified as defective or non-defective, and the positioning of a gear that slightly position
at an angle, here, we discuss several studies by other researchers. In [5], the authors used
feature learning in CNN for fault detection in rotating machinery. Vibration signals from
2 perpendicularly-placed accelerometers are gathered and then they are used as the input
for the convolutional neural network having 32 convolutional layers with channel of width
64 and 200 units of fully-connected layers. The results show that CNN get a very good
result by 6% compared to the random forest classifier. In [1], the authors experimented
on a CNN design for industrial inspection using hyper-parameter selection (i.e., manual
preselection of parameters, such as filter size, that affect the architecture of the artificial
networks). The networks had 3 layers for feature selection, a fully connected artificial
neural networks with 2 layers as a final classifier, and 12 different outputs employing
softmax regression. The authors stated that by using the hyper-parameters setting, the
fault detection networks could be developed with minimal prior knowledge. In our case
study, we do not have hyper-parameters because data are not available. In [10], the
authors presented a one-class classifier for fault defection. This classifier provided a loss
function for a penalty term based on Euclidean geometry in order to train deep CNN
and mapped non-defective samples into a high-dimensional hypersphere where defective
samples are kept far from the hypersphere. A radius for inspection accuracy is specified,
according to which, images mapped outside it are considered to be defective. However, the
number of defective products was small but there were many variations so that minimal
interference by domain experts in classifying such defects would be required, which cannot
be used in our case study. Therefore, our proposed method is specifically designed to tackle
the problem in Section 2.

4. Proposed Method. In order to classify defect images based on the criteria presented
in Section 2, we use two types of methodology employing CNN, namely the Näıve approach
and the fine-grained approach.

4.1. Näıve approach. The Näıve approach entails two-class classification. We directly
input the gear image into CNN which has two image-classification steps: a convolution
layer extracts the important features from the input image, and a fully-connected network
to classify them. During the training process, the weight values are automatically adjusted
using gradient descent. As shown in Figure 3, in this research, the CNN architecture
comprised three convolutional layers. The first two layers use 32 kernels of 3× 3 size, and
the third layer uses 64 kernels, also of 3× 3 size. Padding, max-pooling, and ReLu as the
activation function are applied in each convolutional layer. The two fully-connected layers
each have 128 neurons, and the final layer has two neurons corresponding to defect and
non-defect classes, respectively. AdamOptimizer is used instead of the classical stochastic
gradient descent procedure to update network weights iteratively based on training data.
The architecture was strongly inspired by previous researchers [7,8] with some slight
modification in terms of output simplification (given that our problem is merely one of
binary classifications).

4.2. Fine-grained approach. The CNN architecture of the fine-grained approach is
similar to that of the Näıve approach. However, the gear image is pre-processed prior
to going to CNN. Since the image that determines a defective or non-defective gear is
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Figure 3. Principal architecture of deep CNN in Näıve approach

Figure 4. Designed system for defect detection in fine-grained approach

Figure 5. Principal architecture of deep CNN in fine-grained approach

comprised of eight rectangular boxes, we crop the boxes and, afterward, allow CNN to
classify each box. If any of the boxes contains a defect it will be classified as a defective
image. A more detailed workflow of the fine-grained approach is depicted in Figure 4,
and the CNN architecture is shown in Figure 5.

For image pre-processing, we use gamma correction to normalize the different light in-
tensities of the gear images and, thereby, control the overall contrast. Images that are
too dark or too bright are normalized by Equation (1), where gamma is an input param-
eter. As shown in Figure 6, the best input parameter is 3; the higher the gamma value,
the more correctly it detects rectangular boxes. The Canny edge detection algorithm, a
multi-step algorithm that can detect edges with noise suppression [4] is used to detect
and crop the boxes. The Canny edge detection algorithm, a multi-step algorithm that can
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Figure 6. Image enhancement using different parameters of gamma cor-
rection and Canny detection to detect eight important rectangular boxes

detect edges with noise suppression [4], is used to detect and crop the boxes. The Canny
algorithm detects the edges by using the following steps: preprocessing, calculating gra-
dients, non-maximum suppression, and thresholding with Hysterysis. The preprocessing
is used to remove the noise by using Gaussian blur. Afterward, the gradient magnitudes
and directions are calculated at every single point in the image to find an edge. By
harnessing the gradient magnitudes and orientations, it can determine the actual edge
by using non-maximum supression. The output of the non-maximum suppression is thin
edges, and this might be broken at various points. However, it can be fixed by filling in
gaps with a threshold, which is called Hysterysis.

5. Experimental Results. Data consisting of 200 defective images and 200 non-defec-
tive images of 1024 × 724 pixels original size was gathered from an actual gear manufac-
turing company in South Korea. The experiment was conducted using a PC with an Intel
Core i7 4790K CPU, 32 Gb RAM, a GPU NVIDIA GeForce GTX 1080Ti, Python and
TensorFlow as the deep learning framework.

After the training process converged, we captured the output which flattened vector
from the final convolutional layer. Afterward, we transformed it into matrix form. The
matrix form as visualized in Figure 7 is a pretty good representation of the corresponding
rectangular boxes.

Figure 8 represents the cost function for the 1500 epochs used to train our CNN within
roughly 10 hours. As plotted in the figure, the training of the fine-grained approach
tended to be more stable, faster to converge and to have a lower error rate compared
with the Näıve approach. This result was due to the fact that we had implemented no
image preprocessing method with the Näıve approach. Thus, it became difficult for the
CNN model to distinguish between defective and non-defective-gear images. As noted
earlier, at a glance, it is sometimes difficult to distinguish a defective-gear image from a

Figure 7. Feature extraction result after final convolution layer in matrix
form: (a) normal (non-defective), (b) edge-hole, (c) bump, (d) asymmetry,
(e) chunks, (f) scratch
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Figure 8. Cost function of CNN after 1500 epochs. Left: Näıve approach.
Right: fine-grained approach.

non-defective-gear image.

corrected = 255 × image
1

gamma (1)

accuracy =
TP + TN

TP + FN + FP + TN
(2)

precision =
TP

TP + FP
(3)

recall =
TP

TP + FN
(4)

f -score = 2 × recall × precision

recall + precision
(5)

specificity =
TN

FP + TN
(6)

A confusion matrix is a table that is often used to evaluate the performance of binary
classification [9]. To measure how good our two approaches were, we compared them using
precision, recall, f-score, and specificity, respectively. Precision is the number of correctly
classified positive examples divided by the number of examples labeled by the system as
positive. Recall is the number of correctly classified positive examples divided by the
number of positive examples in the data, while the f-score is a combination of precision
and recall; finally, specificity is used to assess how effectively a classifier identifies negative
labels.

As shown in Table 1, the numbers of cases in which we correctly predicted “defective”
gear, classified as true positive (TP), were 181 for the Näıve approach and 191 for the
fine-grained approach. The numbers of gears that were predicted to be “defective” but
were actually non-defective, classified as false positive (FP) were 19 and 9 for the Näıve
and fine-grained approaches, respectively. The numbers of false negative (FN) images,
predicted by the model to be “non-defective” but actually defective, were 13 and 5 for the

Table 1. Confusion matrix table

N = 400

Näıve approach Fine-grained approach
Predicted Predicted

Defect Non-defect Defect Non-defect

Actual
Defect 181 13 191 5

Non-defect 19 187 9 195
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Näıve and fine-grained approaches, respectively. And, finally, the number of true negative
(TN) images (correctly classified as defective) for the Näıve and fine-grained approaches
were 187 and 191 respectively. From all of these results, we can infer that the fine-grained
approach is superior to the Näıve approach.

In terms of production, our concern is to minimize the numbers of FP and FN gears.
These measures are reflected in the f-score and specificity columns of Table 2. The greater
the number of gears that are classified as false positive, the more the company will lose
throughput and, therefore too, revenue. Meanwhile, the greater the number of gears
that are classified as FN, the greater the number of defective products that will be sold to
customers, the greater the number of complaints the company will receive, and finally, the
worse its reputation will become. Table 2 compares the accuracy, precision, recall, f-score
and specificity between the Näıve and fine-grained approaches, whose values were derived
from Equations (2)-(6). From the experimental results, we can infer that the fine-grained
approach outperforms for all of the criteria other than average processing time. The Näıve
approach, however, is roughly seven times faster than the fine-grained approach. The fine-
grained approach has a longer processing time because it uses two kinds of methods in
the pre-processing stage, namely gamma correction for image normalization and Canny
edge detection for image cropping. Hence, the fine-grained approach scans the gear image
in more detail, whose process yields a better result.

Table 2. Comparison of methods’ accuracy, precision, recall, f-score, and
average processing time

Method
Accuracy

(%)
Precision

(%)
Recall
(%)

F-Score
(%)

Specificity
(%)

AVG Proc.
Time (s)

Näıve 92 90.5 93.3 91.9 90.8 0.09
Fine-grained 96.5 95.5 97.4 96.5 95.6 0.67

6. Conclusions and Future Work. A fast and reliable vision inspection system is cru-
cial in industrial inspection. If there are too many gear images classified as FN defective,
the company will justifiably earn a bad reputation, and if there are too many images clas-
sified as FP defective, the company loses revenue. To tackle these issues, we conducted
an experiment using CNN with two kinds of classification approaches, namely the Näıve
and fine-grained approaches. The fine-grained approach provided good performance in
terms of accuracy. However, it was very slow when compared with the Näıve approach.
Therefore, in our future work we will minimize processing time by using a multi-thread
or distributed GPUs technique.
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