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Abstract. In this paper, we have investigated the application of a hybrid algorithm to
indirect adaptive control of nonlinear system using a multilayer perceptron. The proposed
hybrid algorithm is employed to reduce the learning speed of neural controller. The overall
control scheme includes two neural networks. The first is used to identify the nonlinear
system model while the second is the controller. Both of these are adjusted on-line by
different errors based on the hybrid algorithm. This algorithm uses Kohonen algorithm
to train the parameters of the hidden layer and the gradient descent method to train the
parameters of the output layer. Simulation results obtained with both classical backprop-
agation and hybrid algorithms for two different examples clearly show the advantage of
the proposed approach.
Keywords: Indirect adaptive neural control, Nonlinear system, Gradient descent meth-
od, Kohonen algorithm, Hybrid learning

1. Introduction. Recently, adaptive neural networks have been widely used for various
control systems. In process control application neural networks can be employed in the
controller in either direct or indirect control design [1-14]. In [1], the authors demon-
strated the use of dynamic backpropagation based neural networks for identification and
control of nonlinear dynamical systems. In [2], the authors investigated the application
of neural networks for tracking based on inverse control. In [3], the authors proposed a
fast learning algorithm based on a new cost function and a linearized error signal to con-
trol a nonlinear dynamic system using feed forward neural networks. In [4], the authors
proposed a variable neural network for adaptive control of nonlinear system. The param-
eters of the variable neural networks are adjusted by adaptation laws developed using
Lyapunov synthesis technique. In [5], the authors proposed an approach for enhancing
the estimation of the plant Jacobian which is on-line used in direct adaptive neural in-
verse control of nonlinear plants with noise. The works in [6] concerns with the adaptive
control of continuous-time nonlinear dynamical systems using variable structure neural
networks. In this approach the number of the radial basis function (RBF) networks can be
either increased or decreased with time to achieve desired control performance. In [7], the
authors proposed a neural adaptive control scheme for a class of nonlinear systems with
unknown dead zone using backstepping design techniques. In [8], adaptive neural network
based backstepping control was proposed for a class of uncertain multi-input multi-output
(MIMO) nonlinear systems with input nonlinearities. An adaptive neural network decen-
tralized backstepping out-feedback control for nonlinear large scale system with time delay
was presented in [9]. Neural network based adaptive output feedback control for a class
of MIMO non-affine system was presented in [10]. In [11], a direct adaptive neural control
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of nonlinear systems was presented. The proposed control scheme incorporates a neural
controller and a sliding mode controller. The parameters of neural controller are adjusted
with extreme learning machine. An adaptive neural control of stochastic nonlinear system
with multiple time varying delays and input saturation was presented in [12]. In [13], the
authors investigated an adaptive based neural network for non-linear systems with full
state constraints. In [14], the authors proposed an adaptive neural control of uncertain
MIMO non-linear systems with state and input constraints. In most cases, the neural net-
work used for control problems is the multilayer perceptron trained with the well-known
backpropagation algorithm (BP). Despite its popularity, the main drawback of the basic
backpropagation algorithm is its slow convergence rate. Therefore, some works have been
proposed in the literature in order to overcome the disadvantage of the traditional back-
propagation algorithm. Recently, a hybrid algorithm based on a combination of Kohonen
algorithm and gradient descend method is also proposed for performances improvement
[15]. In [15], the authors proposed a hybrid method to control a nonlinear dynamic system
using feedforward neural network. The control scheme contains two neural networks. One
is the neural model and the other is the neural controller. The neural networks parameters
are adapted separately and off-line. This algorithm could conceptually be split-up into
two steps. The first step is to train the weights connecting the input and the hidden layers
by Kohonen algorithm [16], and the second step is to use the gradient descend method [17]
to adjust the weights connecting the hidden and output layers. The main characteristic
of this hybrid method is to define an appropriate number of neuron in the hidden layer
of feedforward neural network, based on clustering method. The number of active hidden
neurons directly affects the generalization and training time, which are two important
factors in neural controller. This method trains fast and has good generalization perfor-
mances compared to backpropagation algorithm. This paper extends the work of [15] by
using a new indirect adaptive control of nonlinear system. In this design approach the
plant parameters are trained on-line and used to calculate the controller parameters. The
advantage of this configuration is to reduce the effect of parameter variations in order to
raise robustness. The overall control scheme includes two neural networks. The first is
used to identify the nonlinear system model while the second is the controller. Both of
these are adjusted simultaneously and on-line at each sampling instant by considering two
different error functions based on the hybrid algorithm. The paper is organized as follows.
In the next section an adaptive control scheme is presented. The simulation results are
presented in Section 3. Conclusions are given in the last section.

2. Analysis and Design of Indirect Adaptive Neural Controller. The structure
of the overall system for the indiret adaptive neural control of the plant using the neural
network controller (NNC) and the neural network model (NNM) is shown in Figure 1. In
this study, u is generated by NNC. The control problem is to determine a control input
u confined to the plant such that the output yp follows the desired value yd as close as
possible.

For the control design, the plant can be described as a discrete-time simple-input simple-
output (SISO) unknown nonlinear systems:

yp(k + 1) = ψ [yp(k), yp(k − 1), . . . , yp(k − na + 1), u(k), u(k − 1), . . . , u(k − nb + 1)] (1)

where yp is the output of the process, u is its input, and na and nb are the output and
input orders respectively. ψ[. . .] is a nonlinear function. k represents the system time
delay.

Both neural model and controller are feedforward neural networks having one hidden
layer shown in Figure 2. The proposed algorithm uses the fusion of Kohonen algorithm
[16] and gradient descent method [17].
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Figure 1. Control block diagram of the overall system

(a) (b)

Figure 2. Design of the neural networks: (a) neural network controller;
(b) neural network model

The on-line adjustment of the two neural networks is summarized as follows.
Let Xc be the input vector of NNC:

Xc(k) =
[
xc

1(k), . . . , x
c
na+nb

(k)
]

= [yp(k), . . . , yp(k − na + 1), yd(k + 1), u(k − 1), . . . , u(k − nb + 1)]
(2)

First, the input Xc is generated. After that, find the index gc of the winner neuron using
the minimum distance Euclidean criterion:

gc = argminj

{∥∥Xc −W c
j

∥∥} , ∀j ∈ {1 . . . na + nb} (3)

Next, we have to define a neighborhood set around the winner. There after the output of
neural network controller is given by the following equation:

u(k) = f

(∑
j

W
N(gc,d)
lj (k) ·

[
f

(∑
i

W
N(gc,d)
ji (k) · xc

i + bcj(k)

)]
+ bc(k)

)
(4)

where the neighborhood N(gc, d) contains the indices for all of the neurons that lie within

a radius d of the winning neuron gc, W
N(gc,d)
ji are the weights of the winner neuron and

its neighbors in the hidden layer and W
N(gc,d)
lj are the weights of the winner neuron and

its neighbors in the output layer. Thereafter, the signal u is applied to the process.
Let

Xm(k) =
[
xm

1 (k), . . . , xm
na+nb

(k)
]

= [yp(k), . . . , yp(k − na + 1), u(k), . . . , u(k − nb + 1)]
(5)
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Similarly, the input Xm is generated. After that, find the index gm of the winner neuron
using the minimum distance Euclidean criterion:

gm = argminj

{∥∥Xm −Wm
j

∥∥} , ∀j ∈ {1 . . . na + nb} (6)

Next, we have to define a neighborhood set around the winner. There after the output of
neural network model is given by the following equation:

ym(k + 1) = f

(∑
j

W
N(gm,d)
lj (k)

[
f

(∑
i

W
N(gm,d)
ji (k) · xm

i + bmj (k)

)]
+ bm(k)

)
(7)

where the neighborhood N (gm, d) contains the indices for all of the neurons that lie within

a radius d of the winning neuron gm, W
N(gm,d)
ji are the weights of the winner neuron and

its neighbors in the hidden layer and W
N(gm,d)
lj are the weights of the winner neuron and

its neighbors in the output layer.
The error function used to update the parameters of the neural network model is defined

as follows:

Em =
1

2
(em)2 =

1

2
(yp(k) − ym(k))2 (8)

For this on-line scheme, the weights of the controller neural network are adapted using
the performances criterion defined as follows:

Ec =
1

2
(ec)

2 =
1

2
(yd(k) − ym(k))2 (9)

The weights update of the NNM and NNC is accomplished according the following steps:

Step 1: Modify the hidden weights W
N(gm,d)
ji of the NNM in order to move the weights

of the winner neuron and its neighbors to the input vector by the Kohonen learning rule:

∆W
N(gm,d)
ji (k) = αm(k) ·

(
xm

i −W
N(gm,d)
ji (k)

)
= α0 · exp

(
− k

T

)
·
(
xm

i −W
N(gm,d)
ji (k)

) (10)

where α0 is its initial value, T is the total number of iterations and k is the current
iteration.

Step 2: Calculate the output weights W
N(gm,d)
lj of NNM using gradient descent method:

∆W
N(gm,d)
lj (k) = − ε

∂Em(w)

∂W
N(gm,d)
lj

= − ε · (ym(k) − yp(k)) · f ′

(∑
j

W
N(gm,d)
lj · f

(∑
W

N(gm,d)
ji · xm

i

))
· f
(∑

W
N(gm,d)
ji · xm

i

)
(11)

Step 3: Modify the hidden weights W
N(gc,d)
ji of the NNC in order to move the weights

of the winning neuron and its neighbors to the input data by the Kohonen learning rule:

∆W
N(gc,d)
ji (k) = αc(k) ·

(
xc

i −W
N(gc,d)
ji (k)

)
= α0 · exp

(
− k

T

)
·
(
xc

i −W
N(gc,d)
ji (k)

)
(12)

Step 4: Calculate the output weights W
N(gc,d)
lj of the NNC using gradient descent

method:

∆W
N(gc,d)
lj (k) = −ε · (ym(k) − yd(k)) JH(k)

∂u(k)

∂W
N(gc,d)
lj (k − 1)

(13)



ICIC EXPRESS LETTERS, PART B: APPLICATIONS, VOL.9, NO.11, 2018 1129

where

∂u(k)

∂W
N(gc,d)
lj (k − 1)

= u(k) · (1 − u(k)) · f

(∑
i

W
N(gc,d)
ji (k) · xc

i

)
(14)

Moreover, JH in (13) is defined as:

JH(k) =
∂ym(k + 1)

∂u(k)

=
∑

j

W
N(gm,d)
kj ·WN(gm,d)

ji · f ′

(∑
j

W
N(gm,d)
lj · f

(∑
W

N(gm,d)
ji · xm

i

))
· f ′
(∑

W
N(gm,d)
ji · xm

i

)
(15)

3. Simulation Results. To test the performance of the proposed adaptive neural control
with hybrid algorithm, and to compare it with adaptive neural control using BP algorithm,
simulations of the two nonlinear plants are carried out.

3.1. The first example. Consider the following nonlinear system [1]:

y(k + 1) =
y(k)

1 + y2(k)
+ A(k) · u3(k) (16)

where

A(k) = a0 ·
(

1 + sin

(
π · k
100

))
(17)

For the tracking problem, we consider the desired output to be smooth multi-step signal
or sine wave. The structures of both NNC and NNM consist of 2 inputs, 5 hidden neurons
and one output neuron. The initial weights of both neural networks are selected randomly
between −2 and 2. The parameters used in simulation are: ε = 0.5, α0 = 0.8, a0 = 0.5,
d = 2.

Figure 3 shows the desired output yd and the system output y in the case of a multi-step
signal. The results of sine wave signal are shown in Figure 4.

(a) (b)

Figure 3. Evolution of y and yd for Example 1 (multi-step signal): (a)
BP method and (b) hybrid method
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(a) (b)

Figure 4. Evolution of y and yd for Example 1 (sine wave signal): (a) BP
method and (b) hybrid method

3.2. The second example. Consider a continuous stirred tank reactor (CSTR) system
model. A polynomial ARMA model for this system can be represented as follows [18]:

y(k + 1) = θ0 + θ1u(k) + θ2y(k) + θ3u
3(k) + θ4y(k − 1)u(k − 1)u(k) (18)

The parameters are given by:

θ0 = 0.558 θ1 = 0.538 θ2 = 0.116 θ3 = −0.127 θ4 = −0.034

y is the output of the process and the input u is the dilution rate around the operating
point. The objective is to control y by manipulating u. The system is excited by a control
input u of random amplitude in the range [0, 1]. The neuro-controller NNC consists of
four input neurons, 5 hidden neurons and one output neuron. The NNC and the NNM
used here have the same structure. The parameters used in simulation are: ε = 0.5,
α0 = 0.8, d = 2. The classical approach by using backpropagation algorithm and our
proposed approach have been applied to the control of above plant.

Figure 5 shows the desired output yd and the system output y in the case of a multi-step
signal. The results of sine wave signal are shown in Figure 6.

3.3. Discussion and results. The results as seen in Figures 5 and 6 show good as-
ymptotic set point tracking with minimal offsets at all points. From Table 1, it can be
seen that the proposed method achieves a better accuracy when compared with BP al-
gorithm because the error criterion Ec has been reduced for the proposed method. In
addition, the training time of the proposed algorithm is less than the training time of
traditional method. Inclusion of neighborhood approach in training algorithm of neural
networks implies minimum number of parameters and speeds up the convergence of neural
controller.

4. Conclusion. In this paper, we investigated a hybrid algorithm in the context of in-
direct adaptive control of nonlinear system. Simulation results show that the proposed
indirect adaptive control based on neural network using hybrid algorithm improves the
principal characteristic of the controller for a nonlinear system compared to the standard
backpropagation. This algorithm consists of the use of Kohonen algorithm coupled with
gradient descent method. One of the future works is the study of the stability of the
proposed control method to extend the performance of our methodology.
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(a) (b)

Figure 5. Evolution of y and yd for Example 2 (multi-step signal): (a)
BP method and (b) hybrid method

(a) (b)

Figure 6. Evolution of y and yd for Example 2 (sine wave signal): (a) BP
method and (b) hybrid method

Table 1. Comparative results of learning methods

Example Desired trajectory Learning method Ec (Criterion) Training time (s)

Example 1

Multi-step
Backpropagation 0.123 41.823

Proposed 0.080 37.975

Sine wave
Backpropagation 0.18 39.5

Proposed 0.09 29.6

Example 2

Multi-step
Backpropagation 0.254 66.246

Proposed 0.190 50.237

Sine wave
Backpropagation 0.30 46

Proposed 0.23 40
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