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Abstract. Process capability analysis has been developed for assessing quality perfor-
mance. In practice, lifetime performance index is a popular means to assess larger-
the-better type quality performance. The exponential distribution has been recognized as
a useful model for the analysis of lifetime data. In life testing experiments, progres-
sive censoring is quite useful in many practical situations where budget constraints are
in place or there is a demand for rapid testing. Moreover, observations with coarse
scales, and measurement error is not quantified accurately. Therefore, progressive cen-
sored samples and imprecise data may arise in practice. This study constructs a fuzzy
statistical estimator of lifetime performance index under the exponential distribution with
the progressively type II right censored sample. The fuzzy statistical estimator of lifetime
performance index is then utilized to develop a new fuzzy statistical hypothesis testing
procedure. Finally, one practical example is utilized to illustrate the use of the new fuzzy
statistical hypothesis testing procedure.
Keywords: Process capability analysis, Progressive censoring, Fuzzy statistical hypoth-
esis testing

1. Introduction. Montgomery [1] (or Kane [2]) proposed the larger-the-better process
capability index CL (or CPL) for evaluating the lifetime performance of electronic com-
ponents. Tong et al. [3] constructed a statistical estimator of CL under an exponential
distribution. Moreover, a statistical hypothesis testing procedure is developed to assess
the lifetime performance of electronic components.

The exponential distribution has been recognized as a useful model for the analysis of
lifetime data. Let X denote the lifetime of such a product and X has the exponential
distribution with the probability density function (p.d.f.) is

fX(x, θ) = θ exp(−θx), x > 0, θ > 0, (1)

where θ is the unknown scale parameter.
In life testing experiments, progressive censoring is quite useful in many practical

situations where budget constraints are in place or there is a demand for rapid test-
ing. A schematic illustration of progressively type II right censoring is depicted, where
x1,n, x2,n, . . . , xm,n denote the observed failure times and R1, R2, . . . , Rm denote the cor-
responding numbers of units removed (withdrawn) from the test. Let m be the number
of failures observed before termination and x1,n ≤ x2,n ≤ · · · ≤ xm,n be the observed
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ordered lifetimes. Let Ri denote the number of units removed at the time of the ith
failure, 0 ≤ Ri ≤ n −

∑i−1
j=1 Rj − i, i = 2, 3, . . . , m − 1 with 0 ≤ R1 ≤ n − 1 and

Rm = n −
∑m−1

j=1 Rj − m, where Ri’s and m are pre-specified integers (see [4,5]).
In life testing experiments, observations have coarse scales, measurement error that is

not quantified accurately, and imprecise specification limits. The best description of such
data is by so-called imprecise numbers. Such observations are also called fuzzy (see [6]).
Many studies were done to combine statistical methods and fuzzy set theory. For example,
Buckley [7] used a set of confidence intervals producing a triangular shaped fuzzy number
for the estimator, and then used this fuzzy estimator in hypothesis testing producing
a fuzzy test statistic and fuzzy critical values in fuzzy hypothesis testing. Kaya and
Kahraman [8] proposed fuzzy process capability analyses with fuzzy normal distribution
when specification limits are either triangular or trapezoidal fuzzy numbers. Lee et al. [9]
applied the large sample theory to constructing a fuzzy statistical estimator of Cpk under
the normal distribution with the type II right censored sample and imprecise data, and
then this fuzzy statistical estimator of Cpk is utilized for a new fuzzy statistical hypothesis
testing procedure. Hryniewicz [10] proposed different approaches for the calculation of the
p-value for fuzzy statistical tests about the mean in the normal distribution with known
standard deviation, and a certain type of fuzziness (both in data and tested hypotheses).

There are many progressively censored samples and imprecise data in the product of
life-testing and reliability experiments. It is important to handle the progressively cen-
sored samples and imprecise data in the quality assessment. In order to utilize the process
capability index CL in assessing the quality performance of products more generally and
accurately under the progressively censored samples and imprecise data. Therefore, this
study proposed a new approach of analyzing exponential, progressive censored and im-
precise data in the quality assessment. The main aim of our study is to construct a fuzzy
statistical estimator of CL under the exponential distribution with the progressively type
II right censored sample and imprecise data. The fuzzy statistical estimator of CL is then
utilized to develop a new fuzzy statistical hypothesis testing procedure. Moreover, the
managers can then employ the new fuzzy statistical hypothesis testing procedure to assess
the lifetime performance of products.

The rest of this study is organized as follows. Section 2 discusses the relationship
between the lifetime performance index and conforming rate. Section 3 constructs a fuzzy
statistical estimator of CL under the exponential distribution with the progressively type II
right censored sample and imprecise data. Section 4 utilizes the fuzzy statistical estimator
of CL to develop a new fuzzy statistical hypothesis testing procedure. One practical
example and concluding remarks are made in Section 5 and Section 6, respectively.

2. The Lifetime Performance Index and Conforming Rate. Let X denote the
lifetime of such a product and X has the exponential distribution with the p.d.f. as given
by Equation (1). The lifetime is generally required to exceed L to both be economically
profitable and investors. If the lifetime of a product X exceeds the lower specification
limit L, then the product is defined as a conforming product. To assess the lifetime
performance of products, CL can be defined as the lifetime performance index. Under X
having the exponential distribution, there are several important properties, as follows.

• The lifetime performance index CL can be rewritten as:

CL =
µ − L

σ
=

1/θ − L

1/θ
= 1 − θL, CL < 1, (2)

where the process mean µ = E(X) = 1/θ, the process standard deviation σ =√
VAR(X) = 1/θ, and L is the lower specification limit.
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• The conforming rate

Pr = P (X ≥ L) =

∫ ∞

L

θ exp(−θx)dx = exp(CL − 1), CL < 1. (3)

Since the conforming rate Pr and the lifetime performance index CL is one-to-one func-
tion and strictly increasing relationship. The lifetime performance index CL can be a
flexible and effective tool, not only evaluating product quality, but also for estimating the
conforming rate Pr.

3. Fuzzy Statistical Estimator of CL. We apply Buckley’s estimation method to con-
structing fuzzy statistical estimator of CL. Basically, we employ all confidence intervals,
from the 99% to the 0%, placing them one on top of another, to produce a triangular
shaped fuzzy number as our estimator. The estimator uses far more information than just
a point estimate (see [7]). In order to add more sensitiveness to process capability analysis
including more information and flexibility. We also apply Kaya and Kahraman’s estima-
tion method to constructing fuzzy statistical estimator of CL with the fuzzy specification
limit (see [8]).

3.1. Fuzzy statistical estimator of CL with the crisp specification limit. Suppose
that the lifetime of products may be modeled by the exponential distribution. Let X
denote the lifetime of such a product and X has the exponential distribution with the p.d.f.
as Equation (1). With progressively type II right censoring, n units are placed on life-
testing. Consider that X1,n ≤ X2,n ≤ · · · ≤ Xm,n is the corresponding progressively type
II right censored sample, with censoring scheme R = (R1, R2, . . . , Rm). The likelihood
function is given by L(θ) = c∗ θm exp

[
− θ

∑m
i=1 (1 + Ri)xi,n

]
, where c∗ = n(n − R1 −

1) · · · (n − R1 − R2 − · · · − Rm−1 − m + 1). Let ∂
∂θ

ln L(θ) = 0, and we can attain the

maximum likelihood estimator (MLE) of θ is θ̂ = m/
∑m

i=1 (1 + Ri)Xi,n, where Ri and m
are the above definition (see [4,5]). By using Equation (2) and the invariance of MLE (see
[11]), the MLE of CL can be written as given by

ĈL = 1 − mL∑m
i=1 (1 + Ri)Xi,n

. (4)

By Buckley’s method (see [7]), the fuzzy statistical estimator CL of CL can be attained
as follows:

CL[α] =

1 −

(
1 − ĈL

)
χ2

(2m),α/2

2m
, 1 −

(
1 − ĈL

)
χ2

(2m),1−α/2

2m

 , for 0.01 ≤ α ≤ 1, (5)

and

CL[α] =

1 −

(
1 − ĈL

)
χ2

(2m),0.005

2m
, 1 −

(
1 − ĈL

)
χ2

(2m),0.995

2m

 , for 0 ≤ α < 0.01, (6)

where χ2
(2m),α/2 represents the upper 100(α/2)th percentile of χ2

(2m).

3.2. Fuzzy statistical estimator of CL with the fuzzy specification limit. Suppose
that the lower specification limit L is defined as triangular fuzzy numbers L = (l1/l2/l3).
The α-cut of triangular fuzzy number L is as follows:

L[α] = [(l2 − l1)α + l1, (l2 − l3)α + l3]. (7)
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The α-cut of fuzzy statistical estimator CL is

CL[α] =

[
1 −

[(l2 − l3)α + l3]χ
2
(2m), α

2

2W
, 1 −

[(l2 − l1)α + l1]χ
2
(2m),1−α

2

2W

]
,

0.01 ≤ α ≤ 1,

(8)

and

CL[α] =

[
1 −

[(l2 − l3) × 0.01 + l3]χ
2
(2m),0.005

2W
, 1 −

[(l2 − l1) × 0.01 + l1]χ
2
(2m),0.995

2W

]
,

0 ≤ α < 0.01,

(9)

where W =
∑m

i=1(1 + Ri)Xi,n and χ2
(2m),α/2 represents the upper 100(α/2)th percentile of

χ2
(2m).

4. Fuzzy Statistical Hypothesis Testing Procedure for CL. Assuming that the
required index value of quality performance is larger than c, where c denotes the value
of capability requirement, the null hypothesis H0 : CL ≤ c (process is not capable) and
the alternative hypothesis H1 : CL > c (process is capable) are constructed. In the fuzzy
statistical hypothesis testing procedure, the test statistics is a triangular shaped fuzzy
number, and the critical values of test also are triangular shaped fuzzy numbers (see [7]).

4.1. Crisp hypothesis statistical testing procedure. For crisp data, by using the
MLE ĈL of CL as the test statistic, given the specified significance level β, the rejection

region can be expressed to

{
ĈL > 1 − 2m(1−c)

χ2
(2m),β

}
, where the MLE ĈL of CL can be calcu-

lated by (4), c, β and m denote the target value, the specified significance level and the
number of observed failures before termination, respectively, and χ2

(2m), β which represents

the upper 100(β)th percentile of χ2
(2m).

The decision rule of crisp hypothesis testing procedure is provided as follows.

If ĈL > 1− 2m(1−c)

χ2
(2m),β

, it is concluded that the quality performance index of product meets

the required level.

4.2. Fuzzy statistical hypothesis testing procedure. For imprecise data, use the
fuzzy statistical estimator CL as the test statistic. Since the test statistic is fuzzy, the
critical value will also be fuzzy. Letting the fuzzy critical value be CV , given the specified
significance level β, the following α-cut of CV can be derived:

CV [α] =

[
1 −

(1 − c)χ2
(2m),α/2

χ2
(2m),β

, 1 −
(1 − c)χ2

(2m),1−α/2

χ2
(2m),β

]
, (10)

where c and β denote the value of capability requirement and the specified significance
level, and χ2

(2m),β represents the upper 100(β)th percentile of χ2
(2m).

The vertex of CL is at 1 − (1−ĈL)χ2
(2m),0.5

2m
and the vertex of CV is at 1 −

(1−c)χ2
(2m),0.5

χ2
(2m),β

.

AT represents the total area under the graph of CL, AR is the area under the graph of

CL, but to the right of the vertical line through 1−
(1−c)χ2

(2m),0.5

χ2
(2m),β

, AR and AT are as follows
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respectively:

AR =



∫ 1−
(1−ĈL)χ2

(2m),0.995
2m

1−
(1−c)χ2

(2m),0.5

χ2
(2m),β

2

[
Fχ2

(2m)

(
2m(1 − x)

1 − ĈL

)]
dx,

when 1 −

(
1 − ĈL

)
χ2

(2m),0.5

2m
< 1 −

(1 − c)χ2
(2m),0.5

χ2
(2m),β

.

∫ 1−
(1−ĈL)χ2

(2m),0.5
2m

1−
(1−c)χ2

(2m),0.5

χ2
(2m),β

2

[
1 − Fχ2

(2m)

(
2m(1 − x)

1 − ĈL

)]
dx

+

∫ 1−
(1−ĈL)χ2

(2m),0.995
2m

1−
(1−ĈL)χ2

(2m),0.5
2m

2

[
Fχ2

(2m)

(
2m(1 − x)

1 − ĈL

)]
dx,

when 1 −

(
1 − ĈL

)
χ2

(2m),0.5

2m
≥ 1 −

(1 − c)χ2
(2m),0.5

χ2
(2m),β

,

(11)

and

AT =

∫ 1−
(1−ĈL)χ2

(2m),0.5
2m

1−
(1−ĈL)χ2

(2m),0.005
2m

2

[
1 − Fχ2

(2m)

(
2m(1 − x)

1 − ĈL

)]
dx

+

∫ 1−
(1−ĈL)χ2

(2m),0.995
2m

1−
(1−ĈL)χ2

(2m),0.5
2m

2

[
Fχ2

(2m)

(
2m(1 − x)

1 − ĈL

)]
dx,

(12)

where Fχ2
(2m)

(·) is the c.d.f. of χ2
(2m) distribution. This is a difficult integration to compute

AR and AT , and we will use the “trapezoidal rule” to solve the numerical integration (see
[7]).

We choose a value of γ ∈ (0, 1) and our decision rule is: (1) if AR/AT ≥ γ, then reject
H0; (2) otherwise do not reject H0. Buckley [7] suggested γ < 0.5, let us in this paper
use only one value for γ and we choose γ = 0.3 and the decision rule of fuzzy statistical
test is provided as follows.

If AR/AT ≥ γ, then reject H0 and it is concluded that the quality performance index
of product meets the required level.

5. Numerical Example. Nelson [12, pp.105, Table 1.1] presents the results of a life-test
experiment in which specimens of a type of electrical insulating fluid were subject to a
constant voltage stress. The length of time until each specimen failed (or broke down) was
observed. The n = 19 observations recorded at 34 Kv are 0.19, 0.78, 0.96, 1.31, 2.78, 3.16,
4.15, 4.67, 4.85, 6.50, 7.35, 8.01, 8.27, 12.06, 31.75, 32.52, 33.91, 36.71, 72.89. In analyzing
the n = 19 observations, Nelson assumed a scaled Weibull distribution for the times to
breakdown (from the 90% confidence interval [0.459, 1.381] that he determined for the
shape parameter, it is quite clear that an exponential model is also appropriate for the n
= 19 observations). In the practical example, a progressively type II censored sample is
generated from the n = 19 observations recorded at 34 kV. The vector of observed failure
times and the progressively censoring scheme are given as follows:

(x1,n, x2,n, . . . , xm,n) = (0.19, 0.78, 0.96, 1.31, 2.78, 4.85, 6.50, 7.35),

R = (0, 0, 3, 0, 3, 0, 0, 5), m = 8 and n = 19.

(I) We also state the proposed fuzzy statistical estimator of CL as follows:
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Specification limit for the electrical insulating fluid is set to the lower specification
limit L = 1.04. The CL index can be derived by using Equations (5) and (6), the mem-

bership functions CL =

(
1 − (1−ĈL)χ2

(16),0.005

16

/
1 − (1−ĈL)χ2

(16),0.5

16

/
1 − (1−ĈL)χ2

(16),0.995

16

)
=

(0.75486/0.89027/0.96321), where m = 8, L = 1.04, W =
∑m

i=1 (1 + Ri)xi,n = 72.69,

the ĈL = 1 − 8×1.04
72.69

= 0.885541 can be found by Equation (4), χ2
(16),0.005 = 34.267187,

χ2
(16),0.5 = 15.338500 and χ2

(16),0.995 = 5.142206.
We assume that the lower specification limit L is defined as approximately 1.04. The

triangular fuzzy numbers are as L = (1.039/1.04/1.041). The CL indices can be derived
by using Equations (8) and (9). The membership function of CL is determined as follows:

CL =

(
1 −

[(l2 − l3) × 0.01 + l3]χ
2
(2m),0.005

2W

/
1 −

l2χ
2
(2m),0.5

2W

/
1

−
[(l2 − l1) × 0.01 + l1]χ

2
(2m),0.995

2W

)
= (0.75463, 0.89027, 0.96325),

where l1 = 1.039, l2 = 1.04, l3 = 1.041, m = 8, χ2
(16),0.5 = 15.33850, χ2

(16),0.995 = 5.14221

and W =
∑m

i=1 (1 + Ri)xi,n = 72.69.

We can compare the fuzzy estimator CL with the crisp specification limit to the fuzzy
estimator CL with the fuzzy specification limit. The fuzzy estimator CL with the fuzzy
specification limit is wider than the fuzzy estimator CL with the crisp specification limit.

(II) We also state the proposed fuzzy hypothesis testing procedure about CL as follow-
ing.

Step 1. Specification limit for the electrical insulating fluid is set to the lower specification
limit L = 1.04, i.e., if the lifetime of an electrical insulating fluid exceeds 1.04
hours, then the electrical insulating fluid is defined as a conforming product.
The conforming rate Pr of operational performance is required to exceed 80
percent. By Equation (3), the CL value operational performance is required to
exceed 0.80. Thus, the performance index value is set at c = 0.8. The testing
hypothesis H0 : CL ≤ 0.8 (process is not capable) v.s. H1 : CL > 0.8 (process is
capable) is constructed.

Step 2. Specify a significance level β = 0.05.
Step 3. We can compute AR and AT by Equations (11) and (12) as follows respectively:

We can compute AR = 0.029606 and AT = 0.063191, according to m = 8,
ĈL = 0.885541, the performance index value c = 0.8, χ2

(2m),0.5 = 15.338500,

χ2
(2m),β = 26.296228 for the specified significance level β = 0.05, χ2

(2m),0.995 =

5.142205 and Fχ2
(2m)

(·) is the c.d.f. of χ2
(2m) distribution.

Step 4. Given γ = 0.3.
Step 5. Because of AR/AT = 0.46852 ≥ 0.3, we do reject to the null hypothesis H0 :

CL ≤ 0.8. Thus, we can conclude that the lifetime performance index of electrical
insulating fluid meets the required level.

In addition, by using the crisp hypothesis testing procedure, according to m = 8, ĈL =
0.885541, the performance index value c = 0.8, χ2

(2m),β = 26.296228 for the specified signifi-

cance level β = 0.05, we find that ĈL =0.885541>1− 2m(1−c)

χ2
(2m),β

(
=1 − 16(1−0.80)

26.296228
= 0.878310

)
,

so the lifetime performance index of electrical insulating fluid does meet the required level.
Hence, our decision result of the fuzzy hypothesis testing procedure agrees with the result
stated in the crisp hypothesis testing procedure.
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6. Conclusions. The progressively censored sample and imprecise data may arise in
practice. It is very important to handle the progressive censored sample, imprecise and
non-normal data in the quality assessment. There is an important contribution that a
new fuzzy statistical hypothesis testing procedure of analyzing exponential, progressively
censored sample and imprecise data is proposed in this study. The fuzzy statistical hy-
pothesis testing procedure of past studies only can handle the complete sample and the
type II right sample in the quality assessment. The new fuzzy statistical hypothesis test-
ing procedure of this study not only can handle the complete sample and the type II right
sample but also can handle the progressive censored sample in the quality assessment.
The new fuzzy statistical hypothesis testing procedure can handle exponential, progres-
sively type II right censored sample and imprecise data in the lifetime performance of
products. Moreover, the new fuzzy statistical hypothesis testing procedure is utilized to
determine whether the lifetime performance of electrical insulating fluid adheres to the
required level. In future research on this problem, it would be interesting to deal with the
Weibull products based on the progressively type II right censored sample or the record
values.
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