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Abstract. We have recently proposed the estimation method of the decay and growth
rates using the Malthusian parameter and applied it to extracting the features of patho-
logical cardiovascular rhythms using the PhysioBank databases. In this paper, we use the
mathematical model using the Van der Pol oscillators and the PhysioBank databases as
the sources of ECG signals and focus on the irregular rhythms: sinus bradycardia and
ventricular flutter. We compare the mathematical simulation data with the real data in
the PhysioBank databases using the Malthusian parameter estimates and the recurrence
plots.
Keywords: Electrocardiogram (ECG), Sinus bradycardia (SB), Ventricular flutter (VF),
Adaptive observer

1. Introduction. The Electrocardiogram (ECG) is used for diagnosing heart conditions
by recording the small electric waves generated during heart activity. Early detection
of heart diseases/abnormalities enhances the quality of living through appropriate treat-
ment. Numerous research and work analyzing the ECG signals have been reported [1, 2].
Computer-based analysis and classification of ECG signals can be helpful in such ubiq-
uitous health monitoring system [3]. There are two approaches to analyze ECG signals:
one is a model-based one, and the other is a non-model-based one via time series data.
An example of the former method is a mathematical model to describe heart rhythms
considering three-coupled Van der Pol oscillators. Gois and Savi indicated that the heart
rhythms of cardiac diseases can be shown by changing three coupling parameters [4]. In
the non-model-based approach of a dynamical system from an experimental time series
such as ECG signals, there has been an increasing interest in applying chaos theory [1, 2].
Goldberger [1] pointed out that ventricular fibrillation and related tachyarrhythmias are
relatively periodic, not chaos, in contrast, the healthy heart beat shows chaotic dynam-
ics. Thus, sudden death may be viewed as a bifurcation out of chaos. A positive largest
Lyapunov exponent indicates chaos. Casaleggio et al. [6, 7] reported that the use of
caution is necessary in a diagnosis based on Lyapunov exponent, because the calculation
of the Lyapunov exponent strongly depends on the various working parameters. Übeyli
[5] proposed the recurrent neural networks using Lyapunov exponents for classification of
the ECG signal.

The Lyapunov exponent is one of the measures that estimate the decay and growth rates
of nonlinear dynamics. We have recently proposed the estimation method of the decay
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and growth rates using the instantaneous Lyapunov exponent [9] and the Malthusian
parameter. The Malthusian parameter is a kind of the instantaneous decay and growth
rate. Moreover, we applied it to extracting the features of pathological cardiovascular
rhythms using the PhysioBank databases [8].

In this paper, we apply the adaptive estimation method of the time-varying parameter
to the Malthusian parameter estimation. Moreover, the validity of the estimation method
is demonstared using ECG signals. We use the mathematical model using Van der Pol
oscillator and the PhysioBank databases as the sources of ECG signals. In particular, we
focus on the irregular rhythms: sinus bradycardia (SB) and ventricular flutter (VF). SB is
a sinus rhythm with a rate that is lower than normal and under 60 beats per minute. VF is
a tachyarrhythmia characterized by a high ventricular rate (180 ∼ 250 beats per minute)
with a regular rhythm. We compare the mathematical simulation data with the real data
in the PhysioBank databases of the irregular rhythms using the Malthusian parameter
estimates and the recurrence plots. This comparison shows that the mathematical model
is enough or not to approximate the irregular rhythms and the proposed indices can or
cannot distinguish between SB and VF.

2. Malthusian Parameter and Adaptive Estimator. In this chapter, we introduce
the Malthusian parameter and propose the estimator for the Malthusian parameter.

2.1. Malthusian parameter and Lyapunov exponent. A general solution x(t) =
cf(t) ̸= 0; c : constant satisfies the following first-order scalar differential equation:

dx(t)

dt
=

f ′(t)

f(t)
x(t) (1)

where t is a time. The coefficient M = f ′(t)/f(t) is called the Malthusian parameter.
When M is a constant, the solution of (1) is x(t) = eMtx(0). Thus, the Malthusian
parameter is a decay/growth rate and is closely related to the Lyapunov exponent as a
decay/growth rate in local area.

2.2. Estimation of malthusian parameter. We propose a Malthusian parameter es-
timator by using the adaptive observer. Given the signal x(t) generated by

ẋ(t) = θ(t)x(t) (2)

we have to estimate the Malthusian parameter θ(t) for each time. The Malthusian pa-
rameter is assumed to be small as:

|θ̇(t)| < ϵ∗

The adaptive observer that estimates the state x(t) and the Malthusian parameter θ(t)
is given by

˙̂x(t) = −k(x̂(t) − x(t)) + θ̂(t)x(t) (3)

where x̂(t) is a state estimate, θ̂(t) is a Malthusian parameter estimate and k is a positive
constant. Defining the observer error as e(t) = x̂(t)− x(t), we obtain the error system as

ė = −ke + θ̃(t)x(t) (4)

where θ̃(t) = θ̂(t) − θ(t).
The parameter update laws are selected as

˙̂
θ(t) = −γe(t)x(t), γ > 0 (5)

We can prove the following lemma.
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Lemma 2.1. Consider the error system (4). The parameter update law guarantees the

stability of the origin of the error system as follows: If
∣∣∣θ̇(t)∣∣∣ < ϵ∗ and

∣∣∣θ̃(t)∣∣∣ < δ, then

the output error tends to the region M =
{

e : |e| ≤
√

ϵ∗δ
kγ

}
.

Proof: The whole system can be written by

ė = −ke + θ̃(t)x(t) ˙̃θ = −γex(t) − θ̇(t).

Define a Lyapunov-like function as

V =
1

2

(
e2(t) +

1

γ
θ̃2(t)

)
.

Its time derivative is given by

V̇ = eė +
1

γ1

θ̃ ˙̃θ

= e
(
−ke + θ̃(t)x(t)

)
− 1

γ
θ̃
(
γex(t) + θ̇

)
< −ke2 +

1

γ
|θ̃||θ̇|

≤ −ke2 +
ϵ∗δ

γ
.

Thus, for e ∈ R − M , it is guaranteed that V̇ < 0. We can make the region M small by
selecting large γ and k. �

3. ECG, Mathematical Model, and Database. In this chapter, we review the ECG
signal and the heart diseases: SB and VF. Next, we summarize the mathematical model
of the ECG and the database: Physionet.

3.1. Electrocardiogram (ECG). In this section, we quote the description on the ECG
from Gois and Savi [4]. Cardiac electric signals on an intracellular level may be recorded
with a microelectrode, which is inserted inside a cardiac muscle cell. The ECG is a measure
of the extra-cellular electric behavior of the cardiac muscle tissue. The propagation wave-
front of the cardiac electrical signal through the body presents a very complicated shape.
In general, the signal contains the following waves.

• P-Wave: It is the first wave registered in the ECG, representing the atrium activation
just after the sinus stimulation. It normally lasts between 60 and 90 ms in adults,
having a round shape with maximal amplitude between 0.25 and 0.30 mV.

• PR-Interval: It is measured from the start of the P-wave to the start of the QRT-
Complex and lasts 90 ms.

• QRS-Complex: It corresponds to the ventricular activation and is measured from
the start of the first wave (no matter if it is Q- or R-Wave), to the last wave (R-
or S-Wave). In normal adults, the complex lasts about 80 ms and presents a sharp
shape because of the high frequencies of the signal. Its shape varies a lot, depending
on the lead system used.

• ST-Interval: It lasts from the end of the QRS-complex to the start of the T-Wave
and corresponds to the ventricular repolarization process.

• T-Wave: It represents the ventricular activation, which has a round shape with
amplitude about 0.60 mV.
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3.2. Ventricular flutter (VF) and sinus bradycardia (SB). A heart rate of 60 to
100 beats per minute while at rest is considered normal. The common arrhythmias can be
divided into tachycardias (heart rate above 100 beats per minute) and bradycardias (heart
rate below 60 beats per minute). The tachycardias are sub-divided into supraventricular
and ventricular. The bradycardias are also sub-divided into sinus bradycardia, sino-
atrial block, and atrioventricular block. VF is a tacharrhythmia characterized by a high
ventricular rate (180 ∼ 250 beats per minute) with a regular rhythm. SB is one of the
bradycardias, where the number of the first waves in the sinus node is less than the normal
one.

3.3. VdP model of heart dynamics. The general heartbeat dynamics is generated by
the coupling of Van del Pol (VdP) oscillators of a different heart region signal. The normal
cardiac rhythm is primarily generated by the SA node, which is considered as the normal
pacemaker [4]. Besides, the AV node is another pacemaker. Each one of these presents
an actuation potential that is fundamental to the heart dynamics, but not necessarily
the most expressive to compose the ECG signal [4]. Moreover, the third oscillator that
represents the pulse propagation through the ventricles, which physiologically represents
the His-Purkinje complex, is composed by the His bundle and the Purkinje fibers [4]. Gois
and Savi [4] proposed a mathematical model to describe heart rhythms considering three
modified Van der Pol oscillators with delays:

ẋ1 = x2

ẋ2 = −aSAx2(x1 − wSA1)(x1 − wSA2) − x1(x1 + dSA)(x1 + eSA)

+ ρSA sin(ωSAt) + kSA−AV

(
x1 − x

τSA−AV

3

)
+ kSA−HP

(
x1 − x

τSA−HP

5

)
ẋ3 = x4

ẋ4 = −aAV x4(x3 − wAV 1)(x3 − wAV 2) − x3(x3 + dAV )(x3 + eAV )

+ ρAV sin(ωAV t) + kAV −SA

(
x3 − x

τAV −SA

1

)
+ kAV −HP

(
x3 − x

τAV −HP

5

)
ẋ5 = x6

ẋ6 = −aHP x6(x5 − wHP1)(x5 − wHP2) − x5(x5 + dHP )(x5 + eHP )

+ ρHP sin(ωHP t) + kHP−SA

(
x5 − x

τHP−SA

1

)
+ kHP−AV

(
x5 − x

τHP−AV

3

)
,

where xτ
i = xi(t − τ), τ represents a time delay, and sin(ωt) is an external forcing.

The ECG signal is built from the composition of these internal states as

ECG = α0 + α1x1 + α3x3 + α5x5.

We focus on three coupling parameters from the His-Purkinje (HP) complex to the
sinoatrial (SA) node, from the SA node to the atrioventicular (AV) node, and from the AV
node to the HP complex. The VF occurs if the coupling from SA node to AV node is cut.
The SB appears if the coupling from AV node to HP complex is disconnected. The three
coupled VdP oscillators can be rewritten by a linear time-varying MIMO system with
exogenous signals and coupling terms with the coupling parameters. From the results
in Gois and Savi [4], the coupling parameters are given as kSA−HP ̸= 0, kAV −SA ̸= 0,
kHP−AV ̸= 0, and the other parameters are zeros. The following parameters in the VdP
equations are selected as in [4]:

aSA = 3, wSA1 = 0.2, wSA2 = −1.9, dSA = 3;

eSA = 4.9, aAV = 3, wAV1 = 0.1, wAV2 = −0.1;

dAV = 3, eAV = 3, aHP = 5, wHP1 = 1, wHP2 = −1;

dHP = 3, eHP = 7;

τSA−AV = 0.8, τAS−HP = 0.1, vanishing all others.
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We have performed the simulation in the case of the normal ECG (N), the SB, and the
VF [12]. Since we could not get the cardiac rhythms for the coupling parameters given in
Gois and Savi [4], we searched the coupling parameters via our MATLAB/Simulink model.
The normal ECG is generated when the coupling parameters kSA−HP = 0, kAV −SA = 5,
kHP−AV = 20. The SB is generated when the coupling parameters kSA−HP = 0, kAV −SA =
50, kHP−AV = 0. The VF is generated when the coupling parameters kSA−HP = 0,
kAV −SA = 0, kHP−AV = 20. The parameters in the ECG signal were selected for each
wave form as follows:

• N: α0 = 4.7, α1 = 0.25, α3 = 0.05, α5 = 0.4
• SB: α0 = 4.5, α1 = 0.1, α3 = 0.2, α5 = 0.01
• VF: α0 = 4.5, α1 = 0.25, α3 = 5.0, α5 = 5.0

In this paper, we generate the ECG signals using these parameters as the output of the
mathematical model.

3.4. Database: Physionet. Cardiac electric signals on an intracellular level may be
recorded with a microelectrode, which is inserted inside a cardiac muscle cell. The ECG
is a measure of the extra-cellular electric behavior of the cardiac muscle tissue. The
propagation wave-front of the cardiac electrical signal through the body presents a very
complicated shape. PhysioBank databases [11] is a large and growing archive of well-
characterized digital recordings of physiologic signals and related data for use by the
biomedical research community [5]. We select a normal beat (data # 115), an SB beat
(data # 232), and a VF beat (data # 219) to estimate the Malthusian parameter. The
ECG beats include artifacts caused by an electrode misconnection, a both limb and a
precordial, and an improper placement [13]. In this paper, we adopt the second-order
band-pass filter with a lower cutoff frequency of 0.05 [Hz] and an upper cutoff frequency
of 3 [Hz]. Moreover, the ECG signals are normalized to the maximum amplitude of 1.

4. Results. We calculate two indicators for heart beats: the Malthusian parameter and
the recurrence plot using Sunday Chaos Time [10]. Figures 1-3 are the ECG signals gener-
ated by the mathematical model, the Malthusian parameter estimates, and the recurrence
plots. Figure 1 is the result of the normal ECG, Figure 2 is of the VF, and Figure 3 is
of the SB. Note that the ECG signal generated by the mathematical model includes a
rise time. Figures 4-6 are the ECG signals generated by the mathematical model, the
Malthusian parameter estimates, and the recurrence plots. Figure 4 is the result of the
normal ECG, Figure 5 is of the VF, and Figure 6 is of the SB.

ECG signal Malthusian parameter
estimate

Recurrence plot

Figure 1. Normal ECG signal obtained by the mathematical model and
the indicators
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ECG signal Malthusian parameter
estimate

Recurrence plot

Figure 2. VF ECG signal obtained by the mathematical model and the indicators

ECG signal Malthusian parameter
estimate

Recurrence plot

Figure 3. SB ECG signal obtained by the mathematical model and the indicators

ECG signal Malthusian parameter
estimate

Recurrence plot

Figure 4. Normal ECG signal from the database and the indicators

The Malthusian parameter estimate emphasizes a peak signal and a different baseline
for each ECG signal. As a result of the comparison of the Malthusian parameters, those
of the mathematical model are different from those of the real data. This means that the
mathematical model is not enough to approximate the heart rhythms. In the real data
case, the Malthusian parameter can be used to distinguish among the N, the SB, and the
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ECG signal Malthusian parameter
estimate

Recurrence plot

Figure 5. VF ECG signal from the database and the indicators

ECG signal Malthusian parameter
estimate

Recurrence plot

Figure 6. SB ECG signal from the database and the indicators

VF paying attention to the baseline and the interval of a peak. As another result of the
recurrence plots, we can distinguish among the N, the VF, and the SB in the real data,
but cannot find the difference between the N and the SB in the mathematical model.

5. Conclusions. We proposed the decay/growth rate estimation method using the Malt-
husian parameter and applied it to the normal and abnormal ECG signals in PhysioBank
databases. We compared the mathematical simulation data with the real data in the
PhysioBank databases using the Malthusian parameter estimates and the recurrence plots.
In comparing the simulation data with the real data, we may add the importance of the
prefilter to remove artifacts.
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