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Abstract. In the present article, the synchronization and anti-synchronization task be-
tween Zhang chaotic system and Lorenz chaotic system is addressed. The parameters of
both drive and response chaotic systems are considered known. Thus, an active non-
linear method is used for designing an appropriate feedback control law and parameters
estimation law. The stability of dynamical errors and validity of the proposed method are
verified by means of Lyapunov stability theorem. Furthermore, some numerical simula-
tions are done to show the effectiveness of the proposed synchronization method.
Keywords: Master-slave synchronization, Zhang chaotic system, Lorenz chaotic system,
Active nonlinear feedback control

1. Introduction. Sensitivity to the initial conditions and non-predictable behavior of
any chaotic system are prominent features of chaotic system, which makes them popular
in investigations. Since Lorenz in [1] found his chaotic system, many potential applica-
tions arise from chaotic systems and also many chaotic systems have been investigated in
physics, chemistry, electronics and secure communications. Lv chaotic system [2], Chen
chaotic system [3], Chua chaotic system, Lorenz chaotic system [1] and Zhang chaotic
system [4] are some of the studied chaotic systems.

The majority of synchronization approach can be classified into two main categories:
master-slave synchronization methods and coupling methods. Master-slave methods are
also called as leader-response systems, which are widely studied by the researchers. The
ultimate goal of master-slave synchronization is to design a controller to force the motion
trajectories of the slave state variables to track the paths of the salve system state vari-
ables. To this end, many synchronization methods are developed and studied in the last
two decades. Active method [5,6], adaptive method [7-9], backstepping method [10,11],
generalized method [12], phase method [13,14], sliding method [15-17] and projective
method [18-22] are some of them. Among these methods, active method is a common
control method, which plays an important role in many other synchronization methods.
When the parameters of the system are considered known, the chaos synchronization be-
tween two chaotic systems can be easily done by means of active control method. In this
paper, the synchronization problem of the Zhang chaotic system and Lv chaotic systems
was firstly addressed. Chaos synchronization is carried out by introducing a new adaptive
nonlinear feedback control law.

Motivated by the above discussions, synchronization and anti-synchronization between
the Lorenz chaotic system and the Zhang chaotic system are addressed, in this paper.
Section 2 gives some preliminaries and mathematical modeling. Then, the chaos synchro-
nization between Zhang chaotic system, as the leader chaotic system and the Lv chaotic
system as the response system is addressed in Section 2. An adaptive control law and a
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parameter estimation law are obtained based on the Lyapunov stability theorem and the
adaptive control. Numerical simulations are presented in Section 3, in order to verify the
effectiveness of the theoretical discussion given in Section 2. Finally, concluding remark
is given in Section 4.

2. Synchronization. In this section, the synchronization problem between the Zhang
chaotic system, as the master system and the Lorenz chaotic system as the slave system is
addressed. Since the parameters of the systems are considered known, a nonlinear active
feedback controller is designed to provide the master-slave synchronization problem.

Zhang chaotic system was recently introduced in [4], which is constructed based on the
three-dimensional dynamical system with three state variables. Zhang chaotic system can
be presented as follows:

ẋ1 = a(x2 − x1) − x2x3

ẋ2 = bx1 − x2
1

ẋ3 = −cx3 + x2
2

(1)

where x1, x2 and x3 represent the state variables of the system and a, b and c indicate
the three positive constant values as, a = 10, b = 30 and c = 6. The phase portrait of
the Zhang chaotic system (1) is shown in Figure 1, with initial system state variables as,
x1 = 5, x2 = 2 and x3 = 30. As can be seen the behavior of the Zhang chaotic system
is chaotic. In addition, Lorenz in [1] has represented a chaotic system, which can be

(a) (b)

(c) (d)

Figure 1. Time portrait of the Zhang chaotic system
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Figure 2. Time portrait of the Lorenz chaotic system

described as follows:

ẏ1 = −αy1 + αy2

ẏ2 = βx1 − y2 − y1y3

ẏ3 = y1y2 − γy3

(2)

where y1, y2 and y3 are the three state variables of the system and α, β and γ are the
parameters of the system. When α = 10, β = 28 and γ = 8/3, the behavior of the Lorenz
system (2) is chaotic. This chaotic behavior of the Lorenz system (2) is depicted in Figure
2, with initial system state variables as, x1 = 9, x2 = 7 and x3 = 1.

Consider the Zhang chaotic system presented in (1) as the master chaotic system. Then
the slave system can be defined based on the Lorenz chaotic system (2), as follows:

ẏ1 = −αy1 + αy2 + u1

ẏ2 = βx1 − y2 − y1y3 + u2

ẏ3 = y1y2 − γy3 + u3

(3)

where u1, u2 and u3 denote the feedback controller, which have to be designed.
Then the synchronization error between the master Zhang chaotic system (1) and the

slave Lorenz chaotic system (2) can be defined as follows:

e1 = y1 − x1

e2 = y2 − x2

e3 = y3 − x3

(4)
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From Equations (1), (3) and (4), the dynamics of system errors can be obtained as follows:

ė1 = ẏ1 − ẋ1 = −αy1 + αy2 + u1 − a(x2 − x1) + x2x3

ė2 = ẏ2 − ẋ2 = βx1 − y2 − y1y3 + u2 − bx1 + x2
1

ė3 = ẏ3 − ẋ3 = y1y2 − γy3 + u3 + cx3 − x2
2

(5)

Definition 2.1. For the master Zhang chaotic system (1) and the slave Lorenz chaotic
system (3), it is said that the master-slave synchronization would be obtained if an appro-
priate feedback control law and a parameter estimation law are derived. Then the chaos
synchronization would occur and the synchronization errors would be zero as time tends
to infinity, meanly,

lim
t→∞

|yi − xi| = 0 ∀i = 1, 2, 3 (6)

We need to obtain an appropriate feedback controller based on the nonlinear active
control method. In the following theorem, an active feedback controller and a system
parameter estimation law are given to provide the master-slave synchronization.

Theorem 2.1. The master Zhang chaotic system presented in (1) with the state variables
x1, x2 and x3 and the system parameters a, b and c would be synchronized with the slave
Lorenz chaotic system (3), and considering the active system state errors presented in
(4), with the feedback controller defined as follows:

u1 = +αx1 − αy2 + a(x2 − x1) − x2x3

u2 = −βx1 + x2 + y1y3 + bx1 − x2
1

u3 = −y1y2 + γx3 + (γ − c)x3 + x2
2

(7)

Substituting the control law in (7) in error dynamics (5), one can obtain:

ė1 = −αe1

ė2 = −e2

ė3 = −γe3

(8)

Proof: Let the Lyapunov stability theorem as follows:

V =
1

2

(
e2
1 + e2

2 + e2
3

)
(9)

which is positive definite. Then, the derivative of V along the time domain would be
obtained as follows:

V̇ = e1ė1 + e2ė2 + e3ė3 (10)

With considering the dynamical errors (7), the dynamical system (10) will be:

V̇ = −αe2
1 − e2

2 − γe2
3

which is negative definite. Then the anticipated synchronization between Zhang chaotic
system (1) as the master system and the Lorenz chaotic system (3), as the slave sys-
tem would be achieved. By the other word, the synchronization errors converge to zero
as t → ∞. In the following section, some numerical results, related to the proposed
synchronization scheme are given to verify the validity of the proposed method.

3. Numerical Simulations. Assume the parameters of the Zhang chaotic system, as the
master system as: a = 10, b = 30 and c = 6, and the initial values for the master Zhang
chaotic system (1) are taken as, x1(0) = 12, x2(0) = 4, and x3(0) = 7. In additiion, the
initial values of the slave Lorenz chaotic system (3) are selected as: y1(0) = 2, y2(0) = 15
and y3(0) = 0.

The effectiveness of the proposed control method for synchronization of the Zhang
chaotic system (1) and the Lorenz chaotic system (3) with known master and slave system



ICIC EXPRESS LETTERS, PART B: APPLICATIONS, VOL.9, NO.1, 2018 15

Figure 3. Motion trajectories of the state variables of the Zhang and
Lorenz state variables

Figure 4. Synchronization errors between Zhang chaotic system (1) and
Lorenz chaotic system (2)

parameters is shown in Figures 3 and 4. Figure 3 shows that the state variables of the
system (1) converge to zero. In addition, Figure 4 exhibits that the errors between master
and slave system state variables and its estimation values converge to zero.

4. Conclusion. In this paper, a nonlinear active control method for synchronization of
Zhang chaotic system as the master system and the Lorenz chaotic system as the slave
system is derived. The parameters of the drive chaotic system are considered known.
Thus, an appropriate active feedback control is designed based on the Lyapunov stability
theorem to force the motion trajectories of the slave Lorenz chaotic system to track the
trajectories of the master Zhang chaotic system. Then, numerical simulations are carried
out to verify the effectiveness of the proposed method. As can be seen from the simulated
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results, the anticipated master-slave synchronization is achieved and the synchronization
errors of the system state variables also converge to zero as time goes to the infinity.
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