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Abstract. This paper presents a new adaptive composite neural network control for
variable speed wind turbines (VSWT), in order to improve the properties of VSWT. A
novel output tracking control constraint method of neural network is designed to approx-
imate the unknown nonlinear functions, since the dynamic model of VSWT is unknown.
In the design of the observer and the controller, Lyapunov-function is used to prove state
estimation error and parameter estimation (neural network weight) are uniformly ulti-
mately bounded (UUB). In the part of simulation, the model of VSWT with a neural
network observer which applies the new composite neural network method proposed is
developed. A continuous reference input signal is selected to demonstrate the validity of
the proposed constrained control algorithm.
Keywords: Wind power, Composite neural network method control, RBF, VSWT,
Adaptive back stepping

1. Introduction. In recent years, more and more attention is paid to the development
of the wind power. Many countries in the world, like Canada, America, China, Spain,
Germany, Italy, India, and France, are investing a lot of money in improving the utilization
of wind energy [1,2]. Wind is a renewable energy with great potential, and the wind power
does not need to consume fuel and does not produce air pollution [3].

Wind power turns the kinetic energy of the wind into the mechanical energy and con-
verts the mechanical energy into the electricity kinetic energy via the use of the wind
turbine. The wind wheel is a very important component which is composed of two or
more impellers in the shape of propeller. Due to the fact that the size and direction of
the wind often change and the speed of the wind wheel is relatively low, leading to the
unstable speed, it is necessary to attach a transmission gear box to increase the rotation
speed to the rated rotation speed of generator, and add a speed regulating mechanism for
stable speed, and then connect to the generator before driving the generator [4].

With the development of control theory and technology applied to wind power genera-
tion, the wind power generator control system is improved from the initial fixed pitch and
constant speed control to the current variable pitch and variable speed control. The vari-
able speed wind generator has become the main control study object because it is widely
used in the industry of wind power generation. Because of the factors of the inherent non-
linearity and uncertainty of wind turbine system and the existence of external operating
condition effects, the controller designed by using the nominal linear system model makes
the robust performance of the actual system poor and reliability low. Therefore, in recent
years, people have tried to use the nonlinear robust control theory based on models for
studies on the control of wind turbine generator systems. However, the current studies of
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wind turbine control system do not consider the control input constraint problem in the
design process [5-7].

Due to the advantages of approximating any nonlinear function of neural network, it is
widely used in various occasions like wind turbines. Many works have suggested neural
networks (NNs) as powerful methods for approximation of arbitrary input-output map-
pings which can be applied to nonlinear control systems. Radial basis function networks
are one of the useful methods. Radial-basis function (RBF) networks consist of a single
hidden layer of nonlinear nodes, centered so that each of them is specialized on a particular
zone of the input space. The desired response is obtained by adjusting weights connect-
ing the hidden layer with a linear output node, with a training procedure [14]. Using
RBF neural network has two main advantages. In the first place, the neural weights are
tuned online without any pre-training phase. Secondly, the stability and performance of
the closed-loop systems can be guaranteed effectively. Therefore, the adaptive composite
RBF neural network control has become very suitable to control uncertain nonlinear dy-
namical systems like wind turbines. The ability of the online adaptation for approximation
of nonlinear dynamics ensures a strong robustness when disturbances and uncertainties
occur in the system [15].

By using the theory of neural network, the paper has designed a novel output tracking
control constraint method of neural network. The contribution of this paper is proposing
a new control method for the varying operating speed of a wind turbine which is different
from general RBF neural network method. The method we proposed in this paper is
a novel control strategy based on traditional RBF neural network method. Moreover,
the input saturation problem is considered, too. This paper is organized as follows. In
Section 2, the system model and problem formulation are given. In Section 3, the progress
of model transformation is shown clearly. Then a new composite neural network method is
proposed. The observer and controller design are developed in Section 3, too. Simulation
results are presented to show the effectiveness of the proposed technique in Section 4.
Finally, Section 5 makes a conclusion.

2. System Model and Problem Formulation. The basic composition of VSWT in-
cludes three parts, that is wind turbines, growth container and generator. The block
diagram of the variable speed wind turbine is shown in Figure 1 [6]. The rotor dynamic
is described as

Jrω̇r = Ta − Krωr − Br

∫ t

0

ωr(τ)dτ − Tls (1)

And the generator dynamic is given as

Jgω̇g = Ths − Kgωg − Bg

∫ t

0

ωg(τ)dτ − Tg (2)

Because of the gearbox ratio, the following relationship (3) is obtained for the speed
ωr, ωg, and torque Tls, Ths.

ng =
ωg

ωr

=
Tls

Ths

(3)

According to (1) to (3), since Jt ̸= 0, we can obtain

ω̇r =
1

Jt

(
Ta − Ktωr − Bt

∫ t

0

ωr(τ)dτ − Tg

)
(4)

where Jt = Jr + n2
gJg, Kt = Kr + n2

gKg, Bt = Br + n2
gBg, Tg = ngTem. Ta and Tem can be

described as follows [6,11,12],

Ta = Kw · ω2
r , Tem = Kϕ · c(If ) (5)

where Kw is a wind speed to power transfer parameter depending on factors like air
density, radius of the rotor, the wind speed and the pitch angle. c(If ) is the flux in the
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Figure 1. Schematic block diagram for the structure of VSWT

generating system function. The electrical subsystem dynamics of VSWT is governed by
following equation.

İf = −Rf

L
If +

1

L
uf (6)

Hence, from (4) to (6), the dynamic model of VSWT can be described as

ω̇r =
Kw

Jt

ω2
r −

Kt

Jt

ωr −
Bt

Jt

∫ t

0

ωr(τ)dτ − ngKϕ

Jt

c(If )︸ ︷︷ ︸
f1(ωr,θr,If )

İf = −Rf

L
If +

1

L
uf

(7)

where angle θr =
∫ t

0
ωr(τ)dτ . Assume that function f1(ωr, θr, If ), Rf and L are all

unknown.
The controller design and the stability analysis also require the desired reference tra-

jectory to be first order integrable, that is∫ T

0

|ωd(τ)| dτ < ∞

with T being finite (i.e., ωd ∈ L1 ∩ L∞ and ω̇d, ω̈d ∈ L∞).

3. Main Results.

3.1. Model transformation. Define new state x1 = ωr, x2 = ẋ1 = ω̇r = f1(ωr, θr, If ).
Then the time derivative of x2 can be expressed as

ẋ2 = ḟ1(ωr, θr, If )

=
∂f1(ωr, θr, If )

∂ωr

ω̇r +
∂f1(ωr, θr, If )

∂θr

ω̇r +
∂f1(ωr, θr, If )

∂If

İf

= f(x̄) + g(x̄)uf

(8)

with x̄ = [ωr, θr, If ]
T . Hence, the dynamic model of VSWT (7) is now transformed as

ẋ = Ax + B[f(x̄) + g(x̄)uf ], y = CT x (9)
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where

A =

[
0 1
0 0

]
, B =

[
0
1

]
, C =

[
1
0

]
and x = [x1, x2]

T .

3.2. Composite neural network. Since the dynamic model (7) of VSWT is unknown,
in this paper, neural network will be used to approximate the unknown nonlinear func-
tions f(x̄) and g(x̄). At present, RBF neural network is widely implemented for function
approximation. Here, we propose a composite neural network method for function ap-
proximation. For example, continuous unknown nonlinear function h(x̄) is approximated
by following

h(x̄) = hl(x̄) + hn(x̄) = W ∗T S(x̄) + ε (10)

where w∗
l and w∗

n are ideal constant weight vectors of linear and nonlinear parts of h(x̄),

and W ∗ =
[
w∗T

l , w∗T
n

]T
, S(x̄) =

[
x̄∗T , σT (x̄)

]T
. W ∗ is defined as Equation (11)

W ∗T = arg min
W∈RN

{
sup
x̄∈Ωx̄

∣∣h(x̄) − W T S(x̄)
∣∣} (11)

and ε is the composite neural network’s bounded approximation error, σ(·) is an activation
function vector which is usually assumed to be a Gaussian function

σj(x̄) = exp

(
−∥x̄ − µj∥2

δ2
j

)
, j = 1, 2, . . . , N − 3

with N − 3 being the number of RBF hidden layer neurons.
Hence, for continuous unknown nonlinear functions f(x̄) and g(x̄), there exist two

composite neural networks W ∗T
i Si(x̄), i = 1, 2. Then, the outputs of two composite

neural networks are

f̂(x̄) = W T
1 S1(x̄), ĝ(x̄) = W T

2 S2(x̄)

3.3. Observer design. Using the neural network approximations, the dynamic equation
of a neural observer which estimates states in (9) is given as follows

˙̂x = Ax̂ + B
[
f̂(x̄) + ĝ(x̄)uf

]
+ L

(
y − CT x̂

)
ŷ = CT x̂

(12)

where x̂ = [x̂1, x̂2]
T is observed state, and L = [l1, l2]

T is the observer gain vector. Define
the state and output estimate errors as x̃ = x − x̂ and ỹ = y − ŷ.

Theorem 3.1. Consider the observer system (12), and let update laws for the parameters
of neural systems be [16]

Ẇ1 = ỹΓ1S1(x̄) − κ1Γ1W1 (13)

Ẇ2 = ỹΓ2S2(x̄)uf − κ2Γ2W2 (14)

where Γ1 = ΓT
1 > 0, Γ2 = ΓT

2 > 0 and κ1 > 0, κ2 > 0. Then, state estimation error and
parameter estimation (neural network weight) are uniformly ultimately bounded (UUB).
Consider the following Lyapunov-function candidate

V = x̃T Px̃︸ ︷︷ ︸
V1

+ W̃ T
1 Γ−1

1 W̃1 + W̃ T
2 Γ−1

2 W̃2︸ ︷︷ ︸
V2

(15)
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The time derivative of V1 is

V̇1 = x̃T
(
ĀT P + PĀ

)
x̃ + 2x̃T PB(ε1 + ε2uf ) + 2ỹ

[
W̃ T

1 S1(x̄) + W̃ T
2 S2(x̄)uf

]
(16)

We consider the algebraic Riccati-like equation

ĀT P + PĀ + P 2 ≤ −Q (17)

with Q > 0. Then,

V̇1 ≤ −x̃T Qx̃ + 2ỹ
[
W̃ T

1 S1(x̄) + W̃ T
2 S2(x̄)uf

]
+ Υ2

V̇ follows that
V̇ ≤− x̃T Qx̃ + 2κ1W̃

T
1 W1 + 2κ2W̃

T
2 W2 + Υ2

Hence, V̇ will become negative while

∥x̃∥ >

√
κ1∥W ∗

1 ∥2

2λmin(Q)
+

κ2∥W ∗
2 ∥2

2λmin(Q)
+

Υ2

λmin(Q)
= B1

or

∥W̃ T
1 ∥ >

√
∥W ∗

1 ∥2

4
+

κ2∥W ∗
2 ∥2

4κ1

+
Υ2

2κ1

− ∥W ∗
1 ∥

2
= B2

or

∥W̃ T
2 ∥ >

√
κ1∥W ∗

1 ∥2

4κ2

+
∥W ∗

2 ∥2

4
+

Υ2

2κ2

− ∥W ∗
1 ∥

2
= B3

From above analysis, we can obtain all estimation errors are UUB.

3.4. Controller design. The uniform form of observer (12) is given as follows

˙̂x1 = x̂2 + l1

(
y − CT x̂

)
= x̂2 + η1

˙̂x2 = f̂(x̄) + ĝ(x̄)uf + l2

(
y − CT x̂

)
= ĝ(x̄)uf + η2

(18)

where η1 = −l1ỹ, η2 = f̂(x̄) + l2ỹ.
Command filtered back-stepping control is different from back-stepping control, such

as design procedure [11]. The block diagram of the proposed control algorithm for VSWT
is depicted as Figure 2. Define the tracking error variables e1 and e2 which are introduced
as follows

e1 = x̂1 − xc
1, e2 = x̂2 − x̂c

2 (19)

where xc
1 and x̂c

2 are the filtered-command of x̂1 and x̂2, respectively. Let us consider the
candidate Lyapunov function

V1 =
1

2
e2
1

Subsystem

controller

Subsystem

controller1c 2c
Command

Filter

2
ˆ dx

Filter error 

compensation

Neural

observer
ˆˆ ,x

fu2
ˆcx

2 2
ˆˆ ,x1 1

ˆˆ ,x

rd

Figure 2. Proposed control method block diagram
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Magnitude 

Limiter
Rate 

Limiter

Figure 3. Structure of constrained command filters

The time derivative of V1 with respect to time is given by

V̇1 = e1 (x̂2 + η1 − ẋc
1) (20)

The virtual controller (i.e., outer-loop controller) can be designed as

x̂d
2 = ẋc

1 − η1 − c1e1 (21)

where c1 is a positive definite matrix to be designed. Pass x̂d
2 through a filter, which is

shown in Figure 3. Redefine tracking error ē1 = e1−ϵ, and design filter error compensation
as

ϵ̇ = −c1ϵ + x̂c
2 − x̂d

2 (22)

We choose the Lyapunov function

V2 =
1

2
ē2
1 +

1

2
e2
2

The time derivative of Lyapunov function V2 is described as

V̇2 = − c1ē
2
1 − c2e

2
2 ≤ 0 (23)

It means that ē1, e2 are uniformly ultimately bounded. Further, combined with the results
of Section 3.3, we know all error signals of close-loop control system are bounded.

4. Simulation Results. In simulation, the system parameters of VSWT are chosen as
the same as [11,13], which are considered as Rf = 0.02Ω, L = 0.001H, Jt = 24490,
Bt = 52, Kt = 52, Kω = 3, ng = 30, Kϕ = 1.7, c(If ) = 1000If . And the reference angular
velocity signal ωd(t) is selected to be

ωd(t) = 2 + sin(t)

We choose the 10 basis function nodes for each RBF neural networks. And the observer
gain L = [400, 800]T , weight-tuning parameters Γ1 = diag[5 × 104], Γ2 = diag[5 × 103],
κ1 = κ2 = 0.01. The controller gains are selected as K = [50, 50]T .

In this part, Figures 4 and 5 describe the great performances of the VSWT model
and the RBF neural network observer. From Figure 4, we can see that the RBF neural
network observer tracks the result from the VSWT model quite well via the novel adaptive
composite neural network control method.

5. Conclusion. In this paper, an adaptive composite neural network control method
which is robust to uncertainty in the wind turbine model was proposed for VSWT. The
proposed method based on RBF can approximate the complex nonlinear dynamics of an
uncertain wind turbine model and the simulation study shows the effectiveness of this
method.

In the future, we will do more work focusing on the excitation fault problem of wind
turbine generator. Further studies will be made to realize the fault tolerance control of
wind turbine.
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Figure 4. The reference signal and the results of the VSWT model and
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