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Abstract. Recently, complex network theory has emerged as a novel approach for tex-

ture analysis. These methods map a texture image into complex networks. Statistical

features of the networks are then calculated for texture analysis tasks. Nevertheless, the

lack of the use of multifarious network metrics makes it hard to get a more comprehen-

sive texture description. What is more, the preference for regional continuity in most

existing modeling strategies makes them sensitive to noise. This paper proposes a novel

approach for texture classification using hybrid features of two different kinds of complex

networks. Experimental results using real textures and their noise corrupted variants

have demonstrated a high classification accuracy and robustness of proposed method.
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1. Introduction. Texture perception in human vision is one of the most important early
steps towards identifying objects and understanding a scene. As a result, texture analysis
has become a basic issue in computer vision and also a key problem in many application
areas, such as object recognition, remote sensing, and content-based image retrieval.

Many methods of texture analysis have been developed over the years. Statistical
methods represent a texture image by properties that govern the distribution of gray-
levels. One of the most popular statistical methods is co-occurrence matrix [1] and its
multi-scale rotation invariance version [2]. Another popular statistical method is local
binary pattern [3] and its variants [4], which achieve impressive results by calculating
the co-occurrence of gray levels on circular neighborhoods. Spectral methods model the
texture image by means of spectral information. Gabor filters [5, 6] are representatives of
these methods which focus on developing filter banks to efficiently analyze textures. Agent
based methods [7, 8, 10] use autonomous entity to act upon a texture image and then
use the shape or size of the walks as a discriminating feature. More recently, methods
based on complex networks theory have gained a lot of attention for texture analysis.
These methods map a texture image into complex networks and calculate their statistical
features for texture feature extraction [9, 10, 11].

When expressing texture features, most complex network based descriptors use limited
network metrics which are all about the vertex degree. This makes it hard to get a more
comprehensive texture description. Further more, the preference for regional continu-
ity in most modeling strategies makes existing complex network based methods sensitive
to noise. In this paper we propose a novel texture descriptor in order to improve the
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robustness and accuracy of texture analysis further. The main contributions of this let-
ter are summarized as follows. Firstly, a novel complex networks model, namely, the
high-pass networks model is proposed to capture the rapidly spatial varying information
which has been unwitnessed in other complex network based methods. Secondly, several
novel measures of complex networks including weighted degree, clustering coefficient and
weight distribution difference are proposed to describe the local features of textures more
accurately. Thirdly, a modified low-pass networks model is used to work with high-pass
networks model to generate hybrid texture features which could obtain more overall in-
formation during the phase of texture signature generation. Besides widely used data sets
like Outex and CUReT, the UIUC data set which is considered as the most challenging
database by far is used to show the robustness and accuracy of texture discrimination of
the proposed approach.

The remainder of this paper is organized as follows. Section 2 gives a brief review of the
complex network theory, as well as its properties and the definitions of several network
measures. Section 3 shows the process of networks generation for the modeled texture
and the texture signature generation. In Section 4 the experimental results are presented
and discussed. Conclusions of the work are drawn in Section 5.

2. Preliminaries. Complex network theory, which is frequently applied to the fields of
physics and sociology, is an intersection between graph theory and statistics. Owing to
its flexibility to model and express different kinds of problems, complex network theory
has been gaining in popularity in a wide range. Usually there are two main steps when
using complex networks: modelling the problem as networks and extracting measurements
from them. To build a complex network with N vertices, a weighted and undirected graph
G(V,E) is often defined, where V = {v1, v2, . . . , vN} is a set of vertices and E = {evi,vj

|i 6=
j} a set of edges with the weight w(evi,vj

). In the rest of this article, evi,vj
and w(evi,vj

) are
remarked as eij and wij for brevity. To characterize the structure of complex networks,
vertex measures are often used for their powerful ability to describe topological features
of networks. For vertex vi, its degree ki, weighted degree kw

i , clustering coefficient ci and
weight distribution difference yw

i are defined as follows.

ki =
∑

eij∈E

1 (1)

The degree of vi corresponds to the number of edges attached to vi.

kw
i =

∑

eij∈E

wij (2)

The weighted degree of vi is the sum of weights of edges attached to vi.

ci =

∑

eim∈E,ein∈E,emn∈E
1

ki(ki − 1)/2
(3)

The clustering coefficient of vi corresponds to a ratio: the number of triangles including vi

to the number of possible triangles centered on vi. It can be interpreted as the probability
for an edge to exist between two randomly picked neighbors of vi.

yw
i =

∑

eij∈E

(wij/k
w
i )2 (4)

The weight distribution difference of vi describes the effect of the difference of edge weight
distribution around vi on the vertex itself.
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3. Proposed Method.

3.1. Complex networks generation for texture representation. Image texture is
defined as a bi-dimensional structure of pixels. So in the first step of the proposed method,
an image I with m× n pixels and gray levels between 0 and 255 is modeled as a network
G(V,E), where V = {v1, v2, . . . , vm∗n} is the set of vertices such that each vertex corre-
sponds to one pixel and E = {evi,vj

|i 6= j} is the set of edges. Two vertices vi and vj are
connected if the Euclidean distance of their corresponding pixels pi and pj is smaller than
r, namely, the connection radius.

In this stage, as shown in Figure 1(b), the network presents a regular topology which
cannot demonstrate the texture variation. Thus, it is necessary to transform this regular
network Gr into a series of complex networks Gth,r that have relevant properties for texture
analysis, where r is the connection radius and th is a weight threshold. A new complex
network is generated from the original regular one when its edges that have weight greater
(or less, see the second strategy in next subsection) than th had been discarded. The
threshold affects directly the topology, and can result in networks with dense or sparse
connections, as shown in Figure 1(c).

1
r
=

2r =

8

r
=

1
r
=

(a) (b) (c)

Figure 1. Texture image (a) is represented as: (b) regular networks using
different r and (c) complex networks with different weight threshold th.

3.2. LP networks and HP networks. From the last subsection we can learn that a
series of complex networks Gth1,r,Gth2,r, . . . ,Gthmax,r can be obtained by using a series of
thresholds th1, th2, . . . , thmax with a given r. These networks generated with the same
strategy of weight decision and edge discarding are marked as a cluster of graphs Gs. The
proposed method generates two clusters of graphs Gs1 and Gs2 using different strategies.

The first strategy for edge weight decision can be expressed as

ws1(evi,vj
) =

√

√

√

√

1

2

[

(

1

r
dpi,pj

)

2

+

(

1

255
|I(pi) − I(pj)|

)

2
]

(5)

where ws1 is the weight of edge evi,vj
when using the strategy s1, dpi,pj

is some kind of
distance measurement between pixels pi and pj which correspond to the vertices vi and vj

respectively. In this letter, the Euclidean distance is used. I(pi) is the intensity of pixel
pi and I(pi) ∈ [0, 255]. From Equation (5) we can learn that ws1 ∈ (0, 1] for any i 6= j.
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The corresponding strategy for edge discarding can be expressed as

E
s1

th = E −
⋃

e∈E

{e|ws1(e) ≥ th} (6)

where th is a weight threshold. In other words, a complex network of the first cluster is
generated from the original regular one when its edges that have weight greater than th
had been discarded.

From the combination of Equation (5) and Equation (6), we can learn that the first
strategy tries to generate a cluster of complex networks by keeping the connections be-
tween vertices which are close enough to each other, both in distance and pixel intensity.
The resulting networks keep the slow-varying of the expressed texture well, acting like
low-pass filters. Thus, this cluster of complex networks are marked as low-pass networks
(LP networks). We rewrite Gs1 as GLP .

Correspondingly, another cluster of complex networks, namely, high-pass networks (HP
networks) could be generated by the following strategy

wHP (evi,vj
) =

1

255
|I(pi) − I(pj)| exp

(

−
d2

pi,pj

2σr

)

(7)

and

E
HP
th = E −

⋃

e∈E

{

e|wHP (e) ≤ th
}

(8)

where σr ∝ r2 is the distance factor which affects the changing speed of wHP with dpi,pj
.

According to Equation (7), wHP ∈ (0, 1] for any i 6= j, is positively associated with
the difference of pixel intensity, and has a reverse relation with the distance between two
vertices. Combined with Equation (8), HP networks keep connections between vertices
which are close enough to each other with a relatively large difference of pixel intensity.

Thus, two clusters of complex networks have been modeled from the input texture
image for texture feature extraction. Figure 2 shows the HP and LP networks generated
from two texture images with different r and th. Texture images in (a) are 32 × 32
down-sampled images of D43 (first row) and D71 (second row) of normalized Brodatz
texture data set. Networks in (b) and (c) are high-pass networks generated with r = 2
and r = 3 respectively (th = 0.140 for all HP networks). Networks in (d) and (e) are
low-pass networks generated with r = 2 and r = 3 respectively (th = 0.325 for all LP
networks).

3.3. Texture signature generation. Given r and th for each cluster (e.g., the LP
networks), one complex network G

LP
th,r is built. Texture features are then expressed as a

unit feature vector of GLP
th,r

ϕLP
th,r =

{

k, kw, c, yw
}

(9)

where k, kw, c, yw are means of the measures defined in Equations (1)∼(4) over all vertices
in GLP

th,r.
Thus, given an r and a set {th1, th2, . . . , thmax}, the signature of the input texture can

be obtained by a feature vector ψ that is calculated as

ψ =
{

ϕLP
th1,r, ϕ

HP
th1,r, ϕ

LP
th2,r, ϕ

HP
th2,r, . . . , ϕ

LP
thmax,r, ϕ

HP
thmax,r

}

(10)



ICIC EXPRESS LETTERS, PART B: APPLICATIONS, VOL.8, NO.9, 2017 1327

(a) (b) (c) (d) (e)

Figure 2. HP and LP networks generated from two texture images with
different r and th

4. Experimental Results and Discussion.

4.1. Experimental setting and results. In order to evaluate the proposed method,
the signatures were calculated for appropriate configurations for texture classification.
Three texture data sets are used in this evaluation.

Outex TC10 [12]. This data set is used to evaluate the rotation invariance of algo-
rithms. It contains 24 classes of texture images captured under 9 rotation angles. There
are 20 images with the resolution of 128 × 128 for each rotation angle. The 20 images of
rotation angle 0◦ in each class were adopted as the training data and the 160 images of
other 8 rotation angles are used for test.

CUReT [13]. This data set is used to evaluate the illumination invariance of algo-
rithms. It contains 61 texture classes each with 92 selected images (200 × 200) under
different illumination directions. We randomly choose 46 texture images from each class
as training samples, while the remaining 46 images for testing.

UIUC [14]. This data set is used to evaluate performance of algorithms under the
condition of complex variations. It contains 25 classes with 40 images (640 × 480) each,
captured under varying viewpoints. We randomly choose 20 texture images from each
class as training samples, while the remaining 20 images for testing.

To objectively evaluate the robustness against additive Gaussian noise for the proposed
approach, texture images without noise in CUReT and UIUC serve as training set. Each
texture sample of testing set is added Gaussian noise with different SNR values.

After evaluating different configurations, we choose the following parameters in the
experiments: σr = 1

2
r2; r = 2 for Outex TC10, r =

√
8 for CUReT and r = 3 for

UIUC; th1 = 0.08, thmax = 0.53 and the threshold interval ∆th = 0.03 for all GLP of
Outex TC10; th1 = 0.03, thmax = 0.18 and ∆th = 0.01 for all GHP of Outex TC10;
th1 = 0.25, thmax = 0.7 and ∆th = 0.03 for all GLP of CUReT; th1 = 0.05, thmax = 0.20
and ∆th = 0.01 for all GHP of CUReT; th1 = 0.325, thmax = 0.625 and ∆th = 0.02 for
all GLP of UIUC; th1 = 0.01, thmax = 0.16 and ∆th = 0.01 for all GHP of UIUC. Thus,
for each image, 1 radius and 32 thresholds (16 for LP networks and 16 for HP networks)
were given and 4 measures were used in each network. So there were 1 × 32 × 4 = 128
descriptors in total to express the texture of an image.

Our feature vector analysis is carried out by applying a Linear Discriminant Analysis
(LDA) to the data. In the classification, the Nearest Neighbours Classifier (NNC) is used.
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We have chosen a simple classifier rather than a sophisticated one in order to highlight
the importance of texture descriptors.

The results are compared with other well-known descriptors: LBP [3], Circular Gabor
[6], LTP [15], Multi-scale GLCM [2] and existing comlex network based methods includ-
ing Single-Cluster Complex Networks (SCCN) [9], Deterministic Walks on Complex Net-
works (DW+CN) [10] and Complex Network Descriptors using Bag-of-Words Framework
(BoW+CN) [11]. In order to show the effect of hybrid features of two clusters complex
networks, the results of using LP and HP networks separately are also present. Due
to space limitations, all the experimental results including classification accuracy, rota-
tion invariance, illumination invariance, complex variation invariance and the robustness
against additive Gaussian noise are summarized in Table 1.

Table 1. Texture classification results (%) achieved by proposed and other
well-known descriptors for different data sets. Top 3 results of each data
set are in bold and the best one is in underline & bold.

Method

Rotation Illumination Invariance Complex Variation Invariance
Invariance & Robustness Against Noise & Robustness Against Noise

Outex CUReT 46:46 UIUC 20:20

TC10 No Noise SNR=50 SNR=30 No Noise SNR=50 SNR=30

LBP 98.15 94.20 86.28 74.24 79.01 66.36 48.04
C-Gabor 81.42 79.09 78.87 77.43 72.02 71.05 69.37
LTP 98.64 92.66 90.90 83.78 82.34 80.83 77.22

M-GLCM 89.45 86.91 85.03 81.75 81.72 77.97 70.71

SCCN 89.67 87.39 81.66 72.33 78.73 71.01 60.19
DW+CN 90.08 91.23 82.87 71.25 80.10 72.23 60.88
BoW+CN 85.47 82.06 75.67 67.51 76.29 69.04 58.33
LP-CN 92.53 90.75 84.37 75.21 83.27 75.40 65.98
HP-CN 89.36 86.24 79.07 68.55 78.26 69.64 57.22
proposed 96.58 94.18 90.28 81.07 87.25 81.11 73.03

4.2. Discussion. From the distribution of data in bold in Table 1 we can learn that both
LTP and proposed descriptor achieve good performance in all tests. LBP does well under
noiseless or low noise conditions but present a significant drop when noise increasing. On
the contrary, multi-scale GLCM performs well in different challenges of noise.

When compared with other traditional vertex degree based complex network descrip-
tors (SCCN, DW+CN and BoW+CN), the approach that only uses LP networks in this
paper wins out thanks to the usage of more comprehensive measures defined in Equa-
tion (9). Although the HP networks just achieve mediocre performance, they provide
important supplemental information of the statistical characteristics of textures for the
LP networks. As a result, the final proposed descriptor using hybrid features of the
LP and HP networks presents an excellent texture discrimination overcoming traditional
complex network based methods and a solid robustness under conditions of rotation and
illumination variations, significant viewpoint changes and different noises.

5. Conclusions. In this letter, we proposed a novel method of texture analysis using
the complex network theory. We investigated how a texture image can be effectively
represented, characterized and analysed by two types of complex networks, namely the
low-pass networks and the high-pass networks. Results showed that the method was
very robust to environmental change and also presented an excellent discrimination in



ICIC EXPRESS LETTERS, PART B: APPLICATIONS, VOL.8, NO.9, 2017 1329

different challenging texture data sets, outdoing other complex network based descriptors
for texture classification.

As future works, we intend to use more different statistical frameworks such as bag of
features model to fuse local texture information more effectively. Besides, a multi-scale
analysis should be explored in the context of complex network based approaches.
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