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ABSTRACT. Burr type XII distribution (BXIID) has earned more attention in the few
past decades because of the flexibility of distribution shape for model fitting. However,
no analytical closed formula solutions of the mazimum likelihood estimates (MLEs) of
BXIID parameters can be obtained based on progressively type I interval-censored (PTIIC)
samples. In this manuscript, the differential evolution algorithm (DE) and quasi-Newton
method (QN) are applied to searching the MLEs of BXIID parameters based on PTIIC
samples. The performance of DE and QN is evaluated by means of Monte Carlo simu-
lations. Simulation results show that the DE outperforms QN in terms of smaller bias
and mean squared error (MSE) of the MLEs.

Keywords: Burr type XII distribution, Maximum likelihood estimation, Differential
evolution method, Progressively type I interval-censored scheme, Quasi-Newton method

1. Introduction. BXIID was initially introduced by Burr [1]. Tadikamalla [2] estab-
lished the connection of BXIID to some popular lifetime distributions. Because of having
two shape parameters, the BXIID is particularly useful to model unimodal-distributed
lifetime data. Studies about using BXIID for reliability inference with different censoring
schemes can be found in [3-9]. The probability density function and cumulative distribu-
tion function of BXIID are defined, respectively, by

f(zle, k) = cka® 1 (1 4 %)L, (1)
and
F(xle,k)=1—(1+29% 2>0,¢>0, k>0, (2)
where c¢ is inner parameter and k is outer shape parameter. Denote the two-parameter
BXIID, which is defined by Equations (1) and (2), by BXIID(c, k).
Because most of today’s lifetime products are highly reliable, it is difficult to collect
product lifetimes from life tests in affordable time with given budget. Censored schemes

have been widely used to conduct life tests for saving testing time and cost. The time
censoring scheme, failure censoring scheme and type I interval-censored scheme are three
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popular censoring schemes in reliability applications. The time censoring scheme and
failure censoring scheme are also named the type I censoring scheme and type II censoring
scheme, respectively. The type I censoring scheme allows experimenters to terminate life
test at a predetermined time, say t,. The exact lifetime of surviving units longer than t,
is censored and cannot be observed. The type II censoring scheme allows experimenters
to terminate life test once a fix number of failure times are collected, say x(1) < () <
-+ < (). The exact lifetime of surviving units longer than z,, is censored and cannot
be observed.

Experimenters usually favor type I censoring scheme due to the merit of constant ex-
perimental time. When implementing a type I censored test, the experimenter may only
count the number of failed units in non-overlap time intervals at the endpoints of the time
intervals. This censoring scheme is named type I interval-censored scheme. The type I
interval-censored scheme is easy for operation, but experimenters cannot obtain the ex-
act failure times of units for making reliability inferences. To avoid using only shortest
lifetimes of test units for conducting reliability inference, experimenters could occasion-
ally remove some surviving units during the life testing. Progressively censoring schemes
can be then introduced into life tests instead of using traditional censoring schemes, see
[6-8,10].

2. Motivations and Organization. Considering administrative convenience for run-
ning a censoring test with more extreme lifetimes in a constant experimental time, we
would like to study reliable parameter estimation procedures for the BXIID with PTIIC
samples. Because no close form of the MLEs of the BXIID parameters can be found based
on PTIIC samples, computation procedures, for example the QN, genetic algorithm (GA)
and DE, can be used to search the MLEs of BXIID parameters.

QN uses the gradient and the Hessian matrix of second derivatives of the function to
search MLEs. The QN is very sensitive to the initial inputs of BXIID parameters and
may fail if practitioners cannot accurately set up the initial inputs of model parameters
or the likelihood function is complicated. Tsai et al. [11] used GA to obtain reliable
MLEs of BXIID parameters. They found that the GA based MLEs have smaller bias
and MSE than the QN based MLEs. The GA, introduced by Holland [12] in 1975, is an
evolutionary algorithm that generates solutions for optimizing the target function based
on the technique inspired by natural evolution. However, the GA could not perform well
for optimizing real number function.

Other competitive heuristic methods, for example the DE, can be better candidates to
improve the estimation performance of QN and GA. DE uses evolutionary computation
algorithm to optimize the target function by iteratively trying to improve candidate so-
lution utilizing a specific measure of quality. Moreover, DE uses actual real number, and
the ideas of mutation and crossover in DE are substantially different from that in the
GA. In DE, the mutation and crossover operations create a new vector through using the
difference between two or more vectors in the population such that the DE has higher
opportunities to reach optimal solutions than GA in many instances. DE is a heuris-
tic computation method and does not use gradient function to obtain optimal solutions.
Hence, DE has good potential to replace the GA and QN methods to search reliable MLEs
of the BXIID parameters based on PTIIC samples. Some recent studies to address the
better strengths of using DE than GA for optimization can be found in [13-23]. Because
of the aforementioned merits of DE, we are motivated to study the performance of using
DE to obtain MLEs of the BXIID parameters based on PTIIC samples. Moreover, the
performance comparison between using DE and QN to obtain reliable MLEs of BXIID
parameters based on PTIIC samples is studied via simulations.

The rest of paper is organized as follows. Section 3 addresses the statistical model
for the BXIID with PTIIC samples. Moreover, the principals to use QN and DE for
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searching the MLEs of BXIID parameters are also presented. An algorithm is provided
in Section 4 to generate PTIIC samples, and the estimation performance of using DE and
QN to search the MLEs of BXIID parameters is evaluated through using Monte Carlo
simulations. In Section 5, some concluding remarks are given.

3. Statistical Model and Differential Evolution Method. A PTIIC sample can
be collected as follows. A random sample of n units are drawn from BXIID(c, k) for
life testing. The life test starts at t; = 0 and terminates at t,,. Count the number of
failed units in each time interval at the scheduled times ty, ¢, ..., t,,, respectively, and

remove R; surviving units at ;. Let y; denote the number of failed units in (¢;_1,¢;] for
i=1,2,...,m. The likelihood function can be obtained (see [10]) by

L(c, k) oc [ [[F(tile, k) = F(tioale, k)% [1 — F(tile, k)™, (3)
i=1
where F(tg|c, k) = 0, and the log-likelihood function can be presented by

e k) = loglL(O)] = Y [wilog [(1+12) 7 = (1+4) | — kRilog(1 + )] (4)

=1

The MLEs ¢ and k are the solutions to maximize ¢(c, k) by
(é, l%) = argmax{(c, k), (5)
c,k>0

or ¢ and k can be the solutions of the likelihood equations of d¢(c,k)/d¢ = 0 and
0l(c,k)/0k = 0. Because both the likelihood equations are complicated, no closed forms
of maximizers for ¢(c, k) in (4) can be obtained. Iterative numerical search methods are
suggested to obtain the MLEs of ¢ and k. The QN is the typical numerical computation
method for statisticians or engineers to search the MLEs for maximizing the log-likelihood
function in (4). Denote the QN based MLEs of ¢ and k by ¢, and ks, Tespectively. Two
difficulties for obtaining the ¢;; and I%M are found.

(i) The QN uses the gradient and the Hessian matrix of second derivatives of the func-
tion to search MLEs such that the QN often fails to search the MLEs of ¢ and &

due to the terms log [(1 +t )R- 1+ tf)_k} and log(1 + ¢f) could be divergent
with undefined values. Moreover, it is risky that the QN could fall into the trap
with undefined values of log [(1 +t¢ )R -1+ tf)’k} and log(1 + t) during the

computation procedure.
(ii) The QN is sensitive to the initial inputs of ¢ and k. However, the identification of
initial inputs could be difficult in practical applications by using PTIIC samples.

To overcome these two difficulties with using QN to search the MLEs of BXIID(c, k)
based on PTIIC samples, we consider DE as an alternative method to search the MLEs
of ¢ and k. The principal of DE is briefly given as follows.

1. Choose an initial population.

Determine the fitness of each individual.

Perform mutation.

Perform recombination.

Perform selection.

Determine the fitness of each individual.

The above process is repeated until a termination condition has been reached.

NO TR N

Common termination condition(s) can be one of the following conditions, or combinations
of them.

1. A solution is reached to meet the specific criteria.
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2. The fixed number of iterations is reached.

3. The allocated budget is reached.

4. The highest ranking solution’s fitness is reached, or the solutions cannot be improved
by successive iterations.

In this paper, we denote the DE based MLEs of ¢ and k by ¢p and kp, respectively.

4. Simulations and Performance Comparison. Because the DE uses actual real
number and the ideas of the mutation and crossover operations in the DE create a new
vector through using the difference between two or more vectors in the population, the
DE has higher opportunities to reach optimal solutions than using GA in many instances.
We extend the simulation scale of Tsai et al. [11] to study the performance of parameter
estimation through using the DE and QN methods. In this paper, three removal schemes,
removing items with constant probability at each check time point, removing items at the
earliest stage of the life test and removing items at the end stage of the life test, are taken
for the simulation study. We focus on the performance comparison through using the DE
and QN for searching the MLEs of ¢ and k based on the PTIIC samples with these three
removal schemes.

The R package “optim” provides a general-purpose optimization based on the Nelder-
Mead, quasi-Newton and conjugate-gradient algorithms. The optimization procedure of
“optim” includes an option for box-constrained optimization and simulated annealing. In
this paper, the R package “optim” with L-BFGS-B method is used to implement QN for
searching the MLEs of BXIID(c, k). The R package “DFEoptim”, which was published
in 2015, is used to implement the DE for searching the MLEs of BXIID(c, k). The
package “DFoptim” provides global optimization of a real-valued function of a real-valued
parameter vector. Algorithm I is used to generate PTIIC samples of (yi, s, ..., ¥ymn) and

(R1,Rs, ..., Ry).
Algorithm I. Generating PTIIC samples.
Step 1. Let yg = Ry = 0. Set up inspection times of tq, t9, ..., and t,,, and withdraw

probabilities of py, pa, ..., and p,,, where 0 < p; < 1forj=1,2,...,(m—1), and p,, = 1;
Step 2. Let ¢t =0 and ys = r, = 0;
Step 3. Let i = i + 1; Generate y; from the binomial distribution that has sample size
(n —ys — r5) and the success probability

s _ Fltilek) = Ftiale. k).
T A T Fie k)

(6)

Let R, = Lpi X (n - 23;11 (y; + Rj) — yl)J, where |z] is the largest integer equal or
smaller than z;

Step 4. Let ys = (ys + ;) and 75 = (15 + R;);

Step 5. If i < m, go to Step 3; otherwise stop the algorithm.

To implement the DE, the probability of crossover 0.5, weighting factor 0.8 and the
maximum iterations allowed 200 were used to implement the DE method. Because the
page size limitation, we only display the simulation results for m = 5 in this paper.
Let (p1,p2,...,p5) = (0.05,0.05,0.05,0.05,1) denote Scheme I that removes surviving
items with constant probability at each check time point, (p1,po,...,p5) = (0,0,0,0.2,1)
denote Scheme II that removes surviving items at the end stage of the life test and
(p1,p2,---,p5) = (0.2,0,0,0,1) denote Scheme III that removes surviving items at the
earliest stage of the life test. The parameter combinations (¢, k) = (3,5) and (2,7) and
the sample sizes n = 30,50, 100 and 200 are used to conduct the simulation study. The
performance comparison through using the DE and QN are evaluated based on the indices

of bias and MSE with 10000 MLEs of (éM, l%M> and (éD, I%D>.
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The initial inputs of ¢ and k are needed to implement the QN. However, practitioners
could not have enough knowledge to set up the initial inputs of ¢ and k. In the simulation
study, the initial inputs (co, ko) = (1,1), (5,5) and (10,10) are considered to implement
the QN for searching the MLEs of ¢y and ky;. Let ¢, and l%ﬁ/[ denote the QN based
MLEs by using ¢y = 1 and ko = 1 as initial inputs, ¢/f and k! denote the QN based
MLEs by using ¢y = 5 and kg = 5 as initial inputs and ¢} and l%ﬁl denote the QN based
MLEs by using ¢y = 10 and kg = 10 as initial inputs. All simulation results are reported
in Tables 1-6. In summary, we obtain the following results.

1. The DE based MLE beats the QN based MLE with smaller bias and MSE.

2. The bias and MSE are decreased as n increases for both the DE and QN.

3. The QN based MLEs are unreliable and probably result in huge MSE in many
simulation cases.

4. To implement the DE, a PTIIC sample of size thirty for m = 5 is enough to obtain
reliable MLEs of the BXIID(c, k).

5. No consistent conclusion regarding which removal scheme can produce most accurate
MLEs. The impact of removal scheme depends on the sample size.

Overall, the log-likelihood function for the BXIID with PTIIC samples is complicated,
and the QN often fails and cannot obtain reliable MLEs of the BXIID parameters. The
DE is more efficient than the QN to obtain reliable MLEs of the BXIID parameters.

TABLE 1. Bias and MSEs of the MLEs for (¢, k) = (3,5) with Scheme I

Bias MSE
n=30n=50|n=100|n=200| n=30 | n=>50 | n=100 | n =200
cp | 2.590 | 2.421 1.671 0.748 | 17.934 | 17.553 | 12.353 | 4.885
el; | 6.172 | 5477 | 3.055 0.794 | 222.480 | 179.765 | 86.279 | 15.300
el | 4538 | 4.654 | 2.901 0.788 | 224.180 | 180.661 | 86.475 | 15.313
el 4.832 | 4.862 | 2.966 0.800 | 226.580 | 182.582 | 87.112 | 15.442
kp | 1.610 | 0.920 | 0.347 0.134 | 10.115 | 5.549 1.678 0.492
l%ﬁ/‘, 9.643 | 5.140 1.198 0.179 | 257.840 | 135.852 | 28.093 1.894
K1 9.351 | 4.986 1.167 0.177 | 242.990 | 128.007 | 26.509 1.809
l%ﬁf 11.679 | 6.211 1.415 0.190 | 373.400 | 196.855 | 40.420 | 2.548

5. Conclusions. In this paper, the DE and QN are used to obtain the MLEs of BXIID
parameters based on PTIIC samples. An extensive simulation study is conducted to verify
the estimation performance using these two computation procedures. The estimation
performance is evaluated in terms of the bias and MSE. Simulation results show that the
DE outperforms QN with smaller bias and MSEs.

The QN is sensitive to the initial inputs of parameters. Practitioners often lack enough
knowledge to set accurate initial inputs of parameters. The selection of initial parameter
inputs becomes a critical issue for using QN to obtain reliable MLEs, and this issue could
be problematic for users to implement QN for numerical computation. DE is a heuristic
computation method and does not use gradient function to search the MLEs of BXIID
parameters. Based on the simulation results, we suggest that a PTIIC sample of size
thirty with five failure times is enough to implement DE for obtaining reliable MLEs
of the BXIID parameters. We also find that the impact of removal scheme depends on
sample size, and no consistent conclusion regarding which removal scheme can produce
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TABLE 2. Bias and MSEs of the MLEs for (¢, k) = (2,7) with Scheme I

Bias MSE
n=30n=50|n=100|n=200| n=30 | n=>50 | n=100|n = 200
cp | 3.207 | 3.262 3.157 2.724 | 19.318 | 20.884 | 21.960 | 20.591
ot 4.575 | 4.828 | 4.703 3.963 | 102.050 | 108.766 | 104.352 | 87.357

Cyr
6% 1.089 | 1.887 2.727 3.110 08.629 | 105.930 | 102.467 | 86.595
éﬁl 1.381 | 2.171 2.996 3.306 99.560 | 107.211 | 104.361 | 88.456

kp | 1.901 | 1.509 | 0.977 0.510 8.127 6.862 4.624 2.317

l%& 18.248 | 15.419 | 10.524 | 4.812 |445.690 | 379.229 | 260.211 | 117.530
l%ﬁ 17.654 | 14.913 | 10.177 | 4.656 |417.920 | 355.595 | 243.988 | 110.216
EIT 122382 | 18.937 | 12.939 | 5.900 |663.770 | 564.822 | 387.602 | 174.956

TABLE 3. Bias and MSEs of the MLEs for (¢, k) = (3,5) with Scheme II

Bias MSE
n=30n=50|n=100|n=200| n=30 | n=>50 | n=100|n =200
Cp | 2.638 | 2.426 1.615 0.701 18.058 | 17.411 | 11.694 | 4.520
el 6.573 | 5.667 | 2.954 0.755 | 230.490 | 182.717 | 80.215 | 13.476
el | 4.830 | 4.751 2.768 0.745 | 232.180 | 183.690 | 80.402 | 13.486
el 4.927 | 4.802 2.778 0.753 | 231.680 | 183.393 | 80.345 | 13.563
kp | 1.610 | 0.920 0.346 0.134 | 10.114 | 5.548 1.678 0.492
l;‘ﬂ/f 9.642 | 5.139 1.198 0.179 | 257.840 | 135.816 | 28.093 1.894
K1 9.350 | 4.985 1.167 0.177 | 242.990 | 128.007 | 26.509 1.810
KT 11.678 | 6.210 1.415 0.190 | 373.400 | 196.585 | 40.419 2.548

TABLE 4. Bias and MSEs of the MLEs for (¢, k) = (2,7) with Scheme II

Bias MSE
n=30n=50|n=100|n=200| n=30 | n=>50 | n=100|n = 200
cp | 3.263 | 3.291 3.179 2.708 | 19.701 | 21.061 | 22.045 | 20.311
ely | 4.581 | 4.889 | 4.905 4.055 | 98.571 | 107.388 | 107.271 | 88.142
ALl 1.043 | 1.878 2.839 3.123 | 95.046 | 104.432 | 105.216 | 87.226
LT 1.240 | 2.046 2.954 3.179 | 94.394 | 103.869 | 104.852 | 87.165
kp | 1.902 | 1.509 0.977 0.510 8.125 6.862 4.624 2.318
ki, | 18.248 | 15.419 | 10.523 4.812 | 445.690 | 379.230 | 260.211 | 117.530
l%ﬁ 17.654 | 14.913 | 10.176 4.655 | 417.920 | 355.596 | 243.989 | 110.216
l%ﬁf 22.382 | 18.937 | 12.938 5.900 | 663.770 | 564.823 | 387.602 | 174.956

most accurate MLEs. These findings can be valuable guidelines for practitioners to use
DE for obtaining the MLEs of BXIID parameters based on PTIIC samples

Other computation methods, for example ant algorithm, evolution strategies and par-
ticle swarm optimization, could also be helpful to obtain reliable MLEs of the model
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TABLE 5. Bias and MSEs of the MLEs for (¢, k) = (3,5) with Scheme IIT

Bias MSE
n=30n=50|n=100|n=200| n=30 | n=>50 | n =100 | n = 200
Cp | 2.592 | 2.488 1.898 0.972 | 17.314 | 17.674 | 13.992 6.516
el | 6.046 | 5.601 3.666 1.212 | 231.520 | 195.827 | 112.186 | 27.697
Al 4751 | 5.081 3.669 1.222 | 233.220 | 196.564 | 112.364 | 27.720
el 5.641 | 5.795 | 4.000 1.259 | 244.430 | 205.536 | 116.505 | 28.163
kp | 1.607 | 0.919 0.348 0.135 | 10.115 | 5.547 1.676 0.492
1%4 9.643 | 5.140 1.198 0.179 | 257.840 | 135.817 | 28.093 1.894
K1 9.351 | 4.986 1.167 0.177 | 242.990 | 128.008 | 26.510 1.809
l%ﬁf 11.679 | 6.211 1.416 0.190 | 373.400 | 196.585 | 40.420 2.548

TABLE 6. Bias and MSEs of the MLEs for (¢, k) = (2,7) with Scheme III

Bias MSE

n=30n=50|n=100|n=200| n=30 | n =50 | n =100 | n = 200
cp | 3.201 | 3.241 3.203 2.899 | 18.942 | 20.288 | 21.615 | 21.301
ely | 4.317 | 4518 | 4.582 4.043 | 93.126 | 99.732 | 104.227 | 92.858
Al 10971 | 1.784 | 2.882 3.443 | 89.977 | 97.274 | 102.862 | 92.580
Tl 1.514 | 2417 | 3.623 4.085 | 95.124 |104.033 | 111.706 | 100.605
kp | 1.900 | 1.508 0.976 0.510 8.130 6.864 4.625 2.317

l%i/[ 18.248 | 15.419 | 10.524 | 4.812 | 445.690 | 379.229 | 260.211 | 117.530
KH117.654 | 14.914 | 10.177 | 4.656 | 417.920 | 355.595 | 243.988 | 110.217
l;'ﬁf 22.382 | 18.937 | 12.939 5.900 | 663.770 | 564.822 | 387.602 | 174.957

parameters. Moreover, optimal parameter design for implementing computation methods
is also a critical issue. All these topics will be studied in the future.
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