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Abstract. In this paper, a novel time variant forecasting model is proposed for pre-
dicting fuzzy time series. In the training phase, with fuzzy c-means clustering method
and genetic algorithm, a kind of information granule generation technique is applied to
optimizing the partition of the universe. And the proposed method can also dynamically
tune the window size of defuzzification process and adaptive expectations for fuzzy time
series by computing the deviation between the forecasting value and the actual value at
each time. Then, in the testing phase, fuzzy inference is used to deduce the fuzzy de-
scription in the future. Based on the heuristic rule, corresponding window size can also
be determined. Numerical simulation results show that the proposed method can achieve
high forecasting accuracy for fuzzy time series.
Keywords: Fuzzy time series, Information granule, Time variant forecasting algorithm

1. Introduction. Time series theory is a useful tool for forecasting and analyzing many
dynamic models which can be described by a series of data, such as economic system,
temperature model and production process. In some applications the historical data of
each time is usually of linguistic value, not the real number. To track this difficulty, fuzzy
time series is proposed in [1]. Some scholars apply fuzzy time series to solving various
forecasting problem, for example, enrollment forecasting and stock indices forecasting.

In existing researches, appropriate fuzzy relationships have been established to improve
the forecasting capabilities of fuzzy time series. In [2,3], fuzzy time series based on fuzzy
relationship is constructed to solve the forecasting of enrollment problem. In order to
make fuzzy relationship reflect the inherent law of time series, in [4] neural network is
used to generate fuzzy rules. Besides, some scholars also investigate how to determine
the appropriate parameters of fuzzy time series. In [5] the interval length of fuzzy time
series is computed by optimization technology. In [6], information granules are used to
determine the partition of the universe of discourse. And, some adaptive expectation
models are introduced to modify the results of fuzzy time series [7-9].

In previous works, the orders or the size of windows of fuzzy time series are usually fixed.
In practical application, fixed window size could not reflect the dynamic feature of the
objective model relevantly. In [10,11], adaptive time variant model, in which the window
size of time series can be tuned automatically by heuristic rules, is designed. Besides,
the variable window approach has been used for the prediction of interval time series in
[12,13]. However, for each step of model in [10,11], only two kinds of orders can be chosen
to predict value in the next state. It may lose some information and limit the width of
the window size. To deal with these problems and improve the forecasting accuracy of
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fuzzy time series, in this paper, a time variant forecasting model is established for fuzzy
time series, in which the window size can be chosen among multiple values. Furthermore,
a kind of adaptive expectation strategy based on corresponding variant window size is
also introduced to determine forecast results.

This paper is organized as follows. In Section 2, some preliminary knowledge and
definitions of fuzzy time series are introduced. In Section 3, a forecasting method with
variant window size for fuzzy time series is presented. In Section 4, the proposed method
is applied to forecasting several empirical time series. Some conclusions are summarized
in Section 5.

2. Preliminaries of Fuzzy Time Series. In this section, we will introduce the basic
concepts and denotations which are used in the paper.

Suppose that U is the universe of discourse and it is an interval. In the modeling
process, U is partitioned into several subintervals, denoted by ul (l = 1, . . . , s). A fuzzy
set A on U is defined as: A = µA(u1)

/
u1 + µA(u2)

/
u2 + · · · + µA(us)

/
us, where µA(ul)

indicates the degree of membership of ul on fuzzy set A.

Definition 2.1. [1,2] Let Y (t) (t = . . . , 0, 1, 2, . . .), a subset of R1, be the universe of
discourse on which fuzzy sets fi(t) (i = 1, 2, . . .) are defined and F (t) is the collection of
fi(t) (i = 1, 2, . . .). Then F (t) is called a fuzzy time series on Y (t) (t = . . . , 0, 1, 2, . . .).

Definition 2.2. [1] Suppose F (t) is caused by F (t−1), F (t−2), . . ., F (t−m), (m > 0).
This relation can be expressed as the fuzzy relational equation:

F (t) = (F (t − 1) × · · · × F (t − 1)) ◦ R(t, t − m). (1)

Then, Equation (1) is called the m-th order model of F (t).

If F (t − 1) = Al1, . . ., F (t − m) = Alm and F (t) = Aj, then fuzzy relation R(t, t − m)
can be represented by R(t, t − m) = (Al1 ∧ · · · ∧ Alm) → Aj, where Alk (k = 1, . . . , m)
and Aj are fuzzy sets respectively and “→” is the implication operator. In the following,
implication operator is usually chosen as “min” operator.

From Definition 2.1 and Definition 2.2, the mathematical mechanism of fuzzy time series
can be concluded as follows. Firstly, each state F (t) of fuzzy time series is represented
by a fuzzy set Al. Then, first order fuzzy relation or higher order fuzzy relation is chosen
to describe the feature of the time series. Further, defuzzifying technology is applied to
obtaining the actual output of the time series.

3. A Variable Window Size Adaptation Forecasting Model for Fuzzy Time
Series. We will construct a novel time variant model for forecasting fuzzy time series in
this section. There are mainly three issues for this model to be handled, i.e., determining
the window size, optimizing the partition of the universe and computing the forecasting
value.

3.1. Determination of the window size. The main processes for tuning the window
size are presented as follows.

Window size determination method.
Step a-1. Set the maximum value of window size W , where W is a positive integer.
Step a-2. Set t = 1 and initial window size w = 1.
Step a-3. Use window size w = 1 to calculate the value of the next time.
Step a-4. Let t = k. If k ≤ W then the alternative window sizes w ∈ {1, . . . , k}

are respectively used to forecast the actual value of the next time; else window sizes
w ∈ {1, . . . , W} are used to compute the actual value. The value which can achieve the
best forecasting accuracy is set to be the optimum window size at time t. Then, t = t+1.

Step a-5. Repeat Step a-4 until time t reaches the end of the fuzzy time series.
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In this way, the optimum window size of the fuzzy time series at each time can be
obtained. Compared to the fixed order fuzzy time series, proposed model can dynamically
determine the appropriate window size by measuring forecasting accuracy. Hence, this
model is more suitable for describing the dynamic variation feature of the objective model.
Different from the methods in [10,11], there are more choices in the proposed model which
can improve the forecasting capability of the proposed model.

3.2. Defuzzification and modification. Then, we introduce the defuzzifying and mod-
ification method. Suppose that a fuzzy relationship is represented as Al → Aj, where Al

denotes the current state of time t, Aj denotes the forecasting state of time t + 1. The
window size of time t is w.

[
∗ Aj

]
is the corresponding uj for which makes membership

function Aj(x) take the maximum value. L
[
∗Aj

]
and U

[
∗Aj

]
are respectively the lower

bound and the upper bound of interval uj. M
[
∗Aj

]
is the mid-value of uj. Et is the actual

value of time t. Dw reflects the corresponding order of differences in the past w times.
Ft+1 is the forecasting value of time t + 1, which has been adjusted by the forecasting
errors of past time with weight parameters hk (k = 1, . . . , w).

Processes of defuzzifying and adjusting method:
if w = 1 then Ft+1 = Et + h1 ·

(
M

[
∗ Aj

]
− Et

)
;

if w = 2 then Dw = ||Et − Et−1| − |Et−1 − Et−2||;
if w > 2 then Dw =

∣∣|Et − Et−1| −
(∑w−2

k=1

∣∣Et−k − Et−(k+1)

∣∣) + |Et−w+1 − Et−w|
∣∣

R = 0, S = 0;
for r = 1/6, 1/4, 1/2, 1, 2, 3, Xrt+1 = Et + r · Dw, Yrt+1 = Et − r · Dw;

if Xrt+1 ≥ L
[
∗ Aj

]
and Xrt+1 ≤ U

[
∗ Aj

]
, then R = R + Xrt+1, S = S + 1;

if Yrt+1 ≥ L
[
∗ Aj

]
and Yrt+1 ≤ U

[
∗ Aj

]
, then R = R + Yrt+1, S = S + 1;

end

Ft+1 = Et + h1 ·
((

R + M
[
∗ Aj

]) /
(S + 1) − Et

)
+

w∑
k=2

hk · (Et+2−k − Et+1−k) , hk ∈ (−1, 1). (2)

In Expression (2), hk (k = 1, . . . , w) are optimized by genetic algorithm.
From above method, we find that the forecasting value of fuzzy time series is determined

by the subinterval, i.e., the partition points of the universe and the window size.

3.3. Algorithms of proposed method. In the following, we will give the detailed
procedures for forecasting fuzzy time series from two aspects: training phase and testing
phase. And information granular technology is applied to optimizing the division of the
universe for improving the forecasting capability in the training phase.

Computing the forecasting value in the training phase.
Step b-1. Initialize some modeling parameters, including the maximum value of window

size W , the partition number of subinterval for the universe s.
Step b-2. Use fuzzy c-means clustering method to determine the center of clusters,

which are denoted by vl (l = 1, . . . , s), where a < v1 < v2 < · · · < vs < b.
Step b-3. Determine partition points of the universe. For a given universe U = [a, b],

the subintervals are respectively denoted by
[
x̂R

l−1, x̂
R
l

]
, where x̂R

l (l = 1, . . . , s−1) are the

partition points and x̂R
0 = a, x̂R

s = b. Let Dl (l = 1, . . . , s) be the l-th cluster and vl be
the cluster center of Dl. By the principle of justifiable granularity [14], partition points
are computed by the equation: x̂R

l =
(
pR

l + pL
l+1

) /
2, where pR

l and pL
l+1 can be obtained

by solving the following optimization problems:

pR
l = arg max

bl

{Cov(bl) · Sp(bl)} , pL
l+1 = arg max

al+1

{Cov(al+1) · Sp(al+1)} ,
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and

Cov(bl) =
∑

xi∈(vl,bl]∩Dl

bl − xi

bl − vl

, Sp(bl) = 1 − 1

2
· bl − vl

max{Dl} − vl

,

Cov(al+1) =
∑

xi∈[al+1,vl+1)∩Dl+1

xi − al+1

vl+1 − al+1

, Sp(al+1) = 1 − 1

2
· vl+1 − al+1

vl+1 − min{Dl+1}
.

Step b-4. Define fuzzy membership functions. For each interval
[
x̂R

l−1, x̂
R
l

]
, we can

define a fuzzy set Al on it.
Step b-5. Use Steps a-1 to a-5 to deduce the window size at each time t.
Step b-6. Use Expression (2) to compute the forecasting value of the fuzzy time series.
Based on the above process, we can use the training data to obtain the optimized length

of each subinterval and the window size at each time.
Then we will investigate how to compute the forecasting value in the testing phase.

In this phase, the division of the universe and the corresponding membership function
remain the same as them in the training phase. Assume that fuzzy relationship of time
t − 1 and time t is Al → Aj and the window size at time t is w. The fuzzy relationship
between time t and time t + 1 is unknown, i.e., Aj → #, which means that the fuzzy set
of time t+1 is unknown. In order to get it, we respectively choose Aj and Al → Aj as the
fuzzy input and fuzzy rule. By fuzzy inference method, we can deduce the fuzzy output,
denoted by A∗. Approximately, we assume that A∗ is the fuzzy state of time t + 1. And
the window size of time t + 1 is equal to the window size of time t.

Suppose that there are M data in testing phase. The fuzzy set and window size at
time t are known. However, they are unknown from time t + 1 to time t + M . The basic
procedures for computing the forecasting value in the testing phase are listed below.

Computing the forecasting value in the testing phase.
Step c-1. Let i = 1.
Step c-2. Establish fuzzy relationship of time t + i − 2 to time t + i − 1.
Step c-3. For above fuzzy relationship and fuzzy set of time t+ i−1, use fuzzy inference

to deduce the fuzzy set of time t + i.
Step c-4. Use Expression (2) to compute the forecasting value Ft+i, where the window

size of time t + i equals the one of time t + i − 1.
Step c-5. i = i + 1. If i > M , then stop; else go to Step c-2.

4. Numerical Simulation. In this section, we will utilize the proposed method to pre-
dict some time series including the enrollments at the University of Alabama and the
Taiwan Stock Exchange Capitalization Weighted Stock Index (TAIEX), where the mean
square error (MSE), the root mean square error (RMSE) and the average forecasting error
rate (AFER) are used to evaluate the performance of proposed method, i.e.,

MSE =
n∑

i=1

(
|Ei − Fi|2 /n

)
, RMSE =

√√√√ n∑
i=1

(
|Ei − Fi|2 /n

)
,

AFER =
1

n

n∑
i=1

(|Ei − Fi| /Ei ) ,

where Ei denotes the actual value, Fi denotes the forecasted value and n is the number
of data in fuzzy time series.

Here, we choose the enrollments at the University of Alabama as an example to intro-
duce how to use the proposed method to forecast fuzzy time series. For the parameters in
GA, the crossover rate is 67%, and the crossover point is chosen according to a uniform
probability distribution. The mutation rate is 0.05. In each iteration 20 chromosomes
and 10 new chromosomes are selected to produce next generation.
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Example 4.1. Forecasting of enrollments at the University of Alabama.

The universe of the fuzzy time series is U = [13000, 20000]. The maximum value
of window size is W = 5. By information granular technology, seven subintervals can
be obtained, i.e., u1 = [13000, 14614], u2 = [14614, 15429], u3 = [15429, 15803], u4 =
[15803, 16703], u5 = [16703, 17075], u6 = [17075, 18653] and u7 = [18653, 20000].

Fuzzy sets based on the discrete universe {u1, . . . , u7} can be defined as follows:

A1 =
1

u1

+
0.5

u2

+
0

u3

+
0

u4

+
0

u5

+
0

u6

+
0

u7

, A2 =
0.5

u1

+
1

u2

+
0.5

u3

+
0

u4

+
0

u5

+
0

u6

+
0

u7

,

A3 =
0

u1

+
0.5

u2

+
1

u3

+
0.5

u4

+
0

u5

+
0

u6

+
0

u7

, A4 =
0

u1

+
0

u2

+
0.5

u3

+
1

u4

+
0.5

u5

+
0

u6

+
0

u7

,

A5 =
0

u1

+
0

u2

+
0

u3

+
0.5

u4

+
1

u5

+
0.5

u6

+
0

u7

, A6 =
0

u1

+
0

u2

+
0

u3

+
0

u4

+
0.5

u5

+
1

u6

+
0.5

u7

,

A7 =
0

u1

+
0

u2

+
0

u3

+
0

u4

+
0

u5

+
0.5

u6

+
1

u7

.

The fuzzy set and window size at each time are shown in Table 1. Comparisons among
other methods under the same intervals are shown in Table 2. It can be seen that the
proposed method can achieve higher forecasting accuracy in the training phase.

Besides, suppose that the enrollments from 1971 to 1989 are known, and we need to
predict the enrollments from 1990 to 1992. When the number of the subintervals is 7,
comparisons among different methods in the testing phase are shown in Table 3. The
simulation results demonstrate the superiority of the proposed method.

Table 1. The fuzzy set and window size for each time

Year Fuzzy Set Window Size Year Fuzzy Set Window Size
1971 A1 1 1982 A3 1
1972 A1 1 1983 A3 4
1973 A1 2 1984 A2 4
1974 A2 2 1985 A2 4
1975 A3 1 1986 A4 4
1976 A2 4 1987 A5 5
1977 A3 2 1988 A6 1
1978 A4 4 1989 A7 2
1979 A5 1 1990 A7 5
1980 A5 4 1991 A7 2
1981 A4 2 1992 A7 1

Table 2. Comparisons among other methods about enrollments forecasting

Model [21] [6] [20] [16] [10] [15] [4] Proposed method
MSE 324900 242930 183723 95306 85895 62976 32849 10575

Table 3. Comparisons among different methods in the testing phase

Year
Model 1990 1991 1992 RMSE AFER (%)
Actual 19328 19337 18876 – –

[17] 18685 19138 19176 425.46 1.98
[18] 18500 19500 19500 605.95 2.81
[10] 18970 19306 19315 327.54 1.45

Proposed method 19314 19339 19116 138.80 0.45
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Further, to illustrate the forecasting capability of the proposed method in the testing
phase, and to verify the validity of the method for some more complex empirical data
sets, we apply it to handling TAIEX data in the next example.

Example 4.2. TAIEX forecasting.

Firstly, TAIEX data from 2000/11/02 to 2000/12/30 are considered. The number of
subintervals is s = 15. The maximum window size is 4. The proposed method runs 10
times to get the average RMSE. Comparisons with other methods are shown in Table 4.
From the simulation results, we find that the proposed method possesses higher forecasting
capability.

Table 4. Comparisons of TAIEX from 2000/11/02 to 2000/12/30

Model RMSE AFER (%)
[18] 159.40 2.36
[19] 41.32 0.58
[10] 28.37 0.38

Proposed method 24.51 0.26

Then, we apply the proposed method to predicting TAIEX data from 1999 to 2004.
In each year, the historical data of TAIEX from January to October are chosen as the
training set, and the historical data in November and December are chosen as the testing
set. The number of subintervals is chosen as s = 14. The maximum window size is 5.
The proposed method runs 20 times to get the average RMSE. Comparison results are
shown in Table 5. Simulation results show that the proposed method can also possess
high forecasting capability in the testing phase.

Table 5. Comparisons results of TAIEX from 1999 to 2004

Year
Method 1999 2000 2001 2002 2003 2004 Average RMSE

[22] 116.64 123.62 123.85 71.98 58.06 57.73 91.98
[23] 103 154 120 77 54 85 98.83
[24] 109 152 130 84 56 116 107.83
[25] 104.99 124.52 114.66 64.79 53.63 52.96 85.93

Proposed method 99.32 123.38 114.73 67.12 52.38 53.51 85.07

5. Conclusions. In this paper, a novel time variant forecasting method for fuzzy time
series is obtained. Interval fuzzy sets are established through solving a series data driven
optimization problems based on the information granule theory. The window size of the
fuzzy time series is not a constant here. At each time, the window size of defuzzification
and adaptation can be dynamically tuned by computing the error between the actual value
and the forecasting value. Some numerical examples show that the proposed method can
achieve higher forecasting accuracy than other methods in the training phase and in the
testing phase. In the future, the proposed method can be applied to solving the forecasting
problem of fuzzy time series with multiple factors.
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