
ICIC Express Letters
Part B: Applications ICIC International c⃝2017 ISSN 2185-2766
Volume 8, Number 9, September 2017 pp. 1233–1241

ADAPTIVE NONSINGULAR FAST TERMINAL SLIDING-MODE FTC
DESIGN FOR A CLASS OF NONLINEAR SYSTEMS

WITH ACTUATOR FAULTS

Zhifeng Gao1, Peng Cheng1, Moshu Qian2 and Jinxing Lin1

1College of Automation
Nanjing University of Posts and Telecommunications

No. 9, Wenyuan Road, Qixia District, Nanjing 210023, P. R. China
gaozhifeng80@126.com

2College of Electrical Engineering and Control Science
Nanjing University of Technology

No. 30, Puzhu Road, Pukou District, Nanjing 211800, P. R. China
moshu-qian@126.com

Received April 2017; accepted June 2017

Abstract. In this paper, an active fault-tolerant control (FTC) strategy is proposed
for a class of nonlinear systems with actuator faults using the adaptive nonsingular fast
terminal sliding-mode technique. Firstly, a second-order nonlinear systems mode is de-
scribed. Then, a reconfigurable adaptive nonsingular fast terminal sliding-mode controller
is designed to tackle the multiple constraints of actuator faults, external disturbances and
model uncertainties. Next, the Lyapunov stability analysis shows that the designed fault
tolerant controller can guarantee all state signals of the closed-loop systems convergent
to zero in a finite time, and has a good fault tolerant capability. In the end, the proposed
FTC method is applied to the attitude control of a spacecraft and simulation results
demonstrate the effectiveness of the proposed FTC scheme.
Keywords: Fault tolerant control, Nonlinear systems, Nonsingular fast terminal sliding-
mode control, Adaptive control

1. Introduction. It is generally known that all kinds of faults caused by actuators,
sensors, or other components, usually occur in many complex control systems. Once
the faults occur, the faulty control systems may result in performance degradation even
produce serious accidents [1,2]. Fault tolerant control (FTC), which usually consists of
fault detection, fault isolation, fault estimation and accommodation components, has
attracted considerable attention and has become of paramount importance.

In recent years, some FTC methods have been reported for the various linear or non-
linear systems. In [3], a new FTC method incorporating online control allocation (CA)
has been developed to tackle actuator fault, unknown inertia moment and external dis-
turbance. In [4], the longitudinal control problem is studied for the attitude systems
of aircraft using the integral sliding mode control (SMC) allocation approach subject to
actuator fault. In [5], the fault tolerant attitude tracking control is studied for a rigid
spacecraft, and a finite time controller using SMC technology is proposed to accommodate
four types of actuator failure. In [6], an improved integral-type sliding mode fault tolerant
controller is proposed for compensating actuator failures without controller reconfigura-
tion. Compared with the passive FTC methods described in [3-6], active FTC approach
can compensate for faults either by selecting precomputed control laws or by synthesiz-
ing new control strategies online. In [7], an active FTC design method is developed for a
nonlinear system based on non-singular terminal sliding mode control (NTSMC) and non-
singular fast terminal sliding mode control (NFTSMC), but the upper bound of unknown
disturbance must be known in advance. In [8], an FTC approach is proposed for a class of
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Takagi-Sugeno (T-S) fuzzy systems using the terminal sliding mode control technique. In
[9], the variable structure reliable control (VSRC) issue is studied for a class of nonlinear
systems; however, the uniformly ultimately boundedness of the closed loop systems can
be only achieved. In [10], a robust controller is designed for the T-S fuzzy systems, but
the tracking error of the plant cannot converge to zero within a finite time.

Based on the above descriptions, the active FTC problem is studied in this paper for a
class of nonlinear systems with actuator faults using the adaptive nonsingular fast terminal
sliding mode control (ANFTSMC) technique. The main contributions of this paper are
stated as follows. (i) A novel ANFTSMC approach is proposed, which is robust against
model uncertainties, external disturbances in presence of unknown actuator faults and
avoid the singularity phenomena. (ii) The sliding mode surface designed in this paper can
further improve the transient performance of the plant and ensure that the convergence
rate is faster than the traditional SMC. (iii) The control approach designed in this paper is
continuous and less chattering. The developed FTC method is independent of the upper
bound of system uncertainties.

The rest of the paper is organized as follows. In Section 2, the second-order nonlinear
systems mode with actuator fault is given. In Section 3, an active fault tolerant controller
is designed by using adaptive nonsingular fast terminal sliding mode technique, and the
closed-loop state stability of nonlinear systems under actuator fault are analyzed by using
Lyapunov approach. In Section 4, a numerical example is shown to demonstrate the
benefit of the developed FTC approach. Finally, the conclusion is given in Section 5.

2. Problem Statement and Preliminaries. Consider a class of second-order nonlinear
control systems, which can be described by the following

ẋ1 = x2 (1)

ẋ2 = f(x) +G(x)u + d (2)

where x1 = [x1, . . . , xn]T ∈ Rn, x2 = [xn+1, . . . , x2n]T ∈ Rn, and x = (x1, x2)
T represent

the system states, u = [u1, . . . , um]T ∈ Rm with m ≥ n are the control inputs, d =
[d1, . . . , dn]T ∈ Rn represents the total uncertainties and disturbances in the model, and
f(x) ∈ Rn and G(x) ∈ Rn×m are smooth functions with f(0) = 0.

For the purpose of FTC design, the actuator loss of effectiveness fault is considered in
this paper. For the dynamical systems (1) and (2) with the existence of actuator fault,
the overall actuators can be divided into two groups: 1) health, H and 2) fault, F. It is
assumed that only the actuators in group F are allowed to fail while all of the actuators
in group H must be in healthy case during operation. Then, systems (1) and (2) can be
rewritten as

ẋ1 = x2 (3)

ẋ2 = f(x) +GH(x)uH +GF (x)uF + d (4)

where G(x) = (GH(x)|GF (x)) and u = (uH |uF ).
In the rest of this paper, it is assumed that uH ∈ Rk, uF ∈ Rm−k, and m ≥ k ≥ n. In

order to succeed in FTC design, the following assumptions are given.

Assumption 2.1. [7] For all system state x ∈ R2n, the matrix GH(x) ∈ Rn×k has full
row rank, namely, rank(GH(x)) = n.

Note that Assumption 2.1 means that there are sufficient healthy actuators to perform
the FTC task. Moreover, the control input in the group F is diagnosed as

uF = ûF + ũF (5)

where ûF and ũF denote the estimated control value and estimated error of the faulty
actuator uF , respectively.
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Therefore, the systems (3) and (4) can be rewritten as:

ẋ1 = x2 (6)

ẋ2 = f(x) +GH(x)uH +GF (x) (ûF + ũF ) + d (7)

Based on systems (6) and (7), an appropriate FTC law uH will be organized, so that
all states of the closed-loop systems converge to the origin in a finite amount of time,
even when the actuators in F are detected and diagnosed as experiencing faults by FDD
mechanism.

The following assumptions and lemma are mainly used for the controller design and
stability analysis processes of the subsequent sections.

Assumption 2.2. The desired output trajectory is continuous and bounded; moreover,
there exists a known compact set Ψ such that

[x1, ẋ1, ẍ1] ∈ Ψd (8)

Assumption 2.3. [7] The total system uncertainties and faults satisfy the following con-
dition:

∥GF (x)ũF + d∥ ≤ η(x, t) (9)

where η(x, t) is a nonnegative function.

Lemma 2.1. The extended Lyapunov description of finite-time stability with faster finite
time convergence is given as [11]:

V̇ (x) + λ1V (x) + λ2V
r(x) ≤ 0, ∀ t ≥ t0, V (xt0) ≥ 0 (10)

Then, for any given t0, the convergence time is given as:

Tr ≤ t0 +
1

λ1(1 − r)
ln
λ1V

1−r(xt0) + λ2

λ2

(11)

where λ1 > 0, λ2 > 0 and 0 < r < 1.

3. Fault Tolerant Controller Design. In this section, a novel sliding mode surface of
ANFTSMC is firstly designed for the systems (6) and (7) to avoid singularity problem
[13]:

S = x2 + l1x1 + l2S̄(x1) (12)

where S = [S1, . . . , Sn]T ∈ Rn, l1 = diag{l11, . . . , l1n} ∈ Rn×n, l2 = diag{l21, . . . , l2n}
∈ Rn×n and l1i > 0, l2i > 0 (i = 1, . . . , n) are positive scalar. S̄(x) =

[
S̄1(x), . . . , S̄n(x)

]T ∈
Rn are defined as

S̄(x) =

{
h1x + h2sign(x)x2, if S̄i ̸= 0, |x| < ϵ;

x
a
b , otherwise.

(13)

Si = x2i + l1ix1i + l2ix
a
b
1i is the sliding variable, a > 0, b > 0 are positive odd integers, and

0 < a
b
< 1. h1 =

(
2 − a

b

)
ϵ

a
b
−1, h2 =

(
a
b
− 1
)
ϵ

a
b
−2, and ϵ > 0 is a small constant.

Then, the time derivative of sliding variables along the trajectory of systems (6) and
(7) is

Ṡ = ẋ2 + l1ẋ1 + l2Dx1 ẋ1 (14)

where Dx1 is defined as follows

Dx1 =

h1In + 2h2diag(sign(x1i)x1i), if S̄i ̸= 0, |x1i| < ϵ;

a

b
diag

(
x

a
b
−1

1i

)
, otherwise.

(15)

In is n-order unit matrix.
The reaching condition is selected as the following form:

Ṡ = −ϑ1S − ϑ2sign
a
b (S) (16)
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where ϑ1 = diag{ϑ11, . . . , ϑ1n}, ϑ2 = diag{ϑ21, . . . , ϑ2n} are two diagonal matrix and
ϑ1i > 0, ϑ2i > 0 are designed parameters. sign

a
b (·) are defined as

sign
a
b (S) =

[
|S1|sign

a
b (S1), · · ·, |Sn|sign

a
b (Sn)

]T
(17)

Assumption 3.1. There exists an unknown constant χ ≥ 0, which makes the following
formula hold:

∥l1ẋ1 + l2Dx1 ẋ1∥ ≤ χ∥ẋ1∥ (18)

Remark 3.1. By considering Assumption 2.2 and Formula (15), it is easy to know that
∥Dx1∥ ≤ χ1 is satisfied, so that ∥l1ẋ1 + l2Dx1 ẋ1∥ ≤ χ∥ẋ1∥ is satisfied.

Theorem 3.1. Consider the nonlinear systems (6) and (7). If the system is controlled
by the proposed fault tolerant controllers (19) and (20)

uH = −GT
H

(
GHG

T
H

)−1 · σ (19)

σ = f(x) +GF ûF +
S

∥S∥
(χ̂ ∥ẋ1∥ + η̂) + ϑ1S + ϑ2sign

a
b (S) (20)

where

˙̂η = −τ 2
1 η̂ +

1

κ1

∥S∥, τ̇1 = − 1

p1

τ1; ˙̂χ = −τ 2
2 χ̂+

1

κ2

∥S∥∥ẋ1∥, τ̇2 = − 1

p2

τ2

τi > 0, κi > 0, pi > 0 (i = 1, 2) denotes the adaptation gain, then the stability of the
system and the convergence of the tracking error to zero can be guaranteed in a finite time.

Proof: Define the error variables as η̃ = η̂ − η, χ̃ = χ̂ − χ. Consider a Lyapunov
function candidate

V =
1

2
STS +

κ1

2
η̃T η̃ +

κ2

2
χ̃T χ̃+

κ1p1

2
η2τ 2

1 +
κ2p2

2
χ2τ 2

2 (21)

Taking the derivative of V along the systems (6) and (7), we obtain

V̇ = ST Ṡ + κ1η̃
T ˙̃η + κ2χ̃

T ˙̃χ+ κ1p1η
2τ1τ̇1 + κ2p2χ

2τ2τ̇2

= ST [ẋ2 + l1ẋ1 + l2Dx1 ẋ1] + κ1η̃
T ˙̂η + κ2χ̃

T ˙̂χ+ κ1p1η
2τ1τ̇1 + κ2p2χ

2τ2τ̇2

= ST [f(x) +GHuH +GF (ûF + ũF ) + d+ l1ẋ1 + l2Dx1 ẋ1] − κ1τ
2
1 η̃

T η̂ + η̃T∥S∥
− κ2τ

2
2 χ̃

T χ̂+ χ̃T∥S∥∥ẋ1∥ − κ1η
2τ 2

1 − κ2χ
2τ 2

2

(22)

Substituting fault tolerant controllers (19) and (20) into (22), we have

V̇ = ST

[(
GF ũF + d− S

∥S∥
η̂

)
+

(
l1ẋ1 + l2Dx1 ẋ1 −

S

∥S∥
χ̂∥ẋ1∥

)
− ϑ1S − ϑ2sign

a
b (S)

]
− κ1τ

2
1 η̃

T η̂ + η̃T∥S∥ − κ2τ
2
2 χ̃

T χ̂+ χ̃T∥S∥∥ẋ1∥ − κ1η
2τ 2

1 − κ2χ
2τ 2

2

=

[
ST

(
GF ũF + d− S

∥S∥
η̂

)
+ η̃T∥S∥

]
+

[
ST

(
l1ẋ1 + l2Dx1 ẋ1 −

S

∥S∥
χ̂∥ẋ1∥

)
+ χ̃T∥S∥∥ẋ1∥

]
− ϑ1S

TS − ϑ2S
T sign

a
b (S) − κ1τ

2
1 η̃

T η̂ − κ2τ
2
2 χ̃

T χ̂− κ1η
2τ 2

1 − κ2χ
2τ 2

2

=
[
ST (GF ũF + d) − η∥S∥

]
+
(
l1S

T ẋ1 + l2S
TDx1 ẋ1 − ∥S∥χ∥ẋ1∥

)
− ϑ1S

TS

− ϑ2S
T sign

a
b (S) − κ1τ

2
1 η̃

T η̂ − κ2τ
2
2 χ̃

T χ̂− κ1η
2τ 2

1 − κ2χ
2τ 2

2

≤ ∥S∥ (∥GF ũF + d∥ − η) + ∥S∥ (∥l1ẋ1 + l2Dx1 ẋ1∥ − χ∥ẋ1∥) − ϑ1S
TS

− ϑ2S
T sign

a
b (S) − κ1τ

2
1 η̃

T η̂ − κ2τ
2
2 χ̃

T χ̂
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≤ − ϑ1S
TS − ϑ2S

T sign
a
b (S) − κ1τ

2
1

2

(
η̃T η̃ + ηTη

)
− κ2τ

2
2

2

(
χ̃T χ̃+ χTχ

)
≤ − 2min(ϑ1i)

(
1

2
STS

)
− min(ϑ2i)2

(a
b
+1)/2

(
1

2
STS

)(a
b
+1)/2

≤ − 2

(
min(ϑ1i) −

Ω

V

)
V − (2)(

a
b
+1)/2

(
min(ϑ2i) −

(
Ω

V

)(a
b
+1)/2

)
V (a

b
+1)/2 ≤ 0

(23)

where Ω = κ1

2
η̃T η̃ + κ2

2
χ̃T χ̃+ κ1p1

2
η2τ 2

1 + κ2p2

2
χ2τ 2

2 , and Ω
V
< 1,

(
Ω
V

)(a
b
+1)/2

< 1. Therefore,
the closed-loop system is stable in the Lyapunov sense.

According to Lemma 2.1 and (23), the convergence time satisfies the following inequal-
ity:

TS ≤ t0 +
2

γ1

(
1 − a

b

) lnγ1V
(1−a

b )/2(St0) + γ2

γ2

(24)

where t0 is the initial time and V (St0) is the initial value, and γ1 = 2
(
min(ϑ1i) − Ω

V

)
,

γ2 = 2(a
b
+1)/2

(
min(ϑ2i) −

(
Ω
V

)(a
b
+1)/2

)
.

Remark 3.2. In order to eliminate chattering in the proposed fault tolerant controllers
(19) and (20), the sign function sign(x) can be replaced by the saturation function sat(x),
sat(x) is defined as follows:

sat(x, ς) =


1, x > ς;

x

ς
, |x| ≤ ς;

−1, x < −ς.

(25)

where ς > 0 is a small positive constant. Meanwhile, we apply the linear function S
∥S∥+p

to

replacing the nonlinear function S
∥S∥ in the controller (20), where p > 0 is a small positive

constant, thus can help to eliminate chattering.

Remark 3.3. In practice, due to unfavorable effects such as system uncertainties, ac-
tuator faults, external disturbances and bias on state measurements, it is not possible to
achieve the objective S = 0. In the presence of above unfavorable effects, system state
finally converges into small neighborhood of origin, and the neighborhood is small enough
with large enough parameters ϑ1i and ϑ2i (i = 1, . . . , n). Simultaneously, the larger pa-
rameters ϑ1i and ϑ2i (i = 1, . . . , n) provide the faster convergence rate.

Remark 3.4. Through analysis of the sliding mode surface designed in [8-10], it is noted
that the main results obtained in [8-10] cannot avoid singularity phenomenon, which can
be resolved by the designed sliding mode surface (12) in this paper.

Remark 3.5. Compared with power reaching law selected in [7,10], the reaching law (16)
selected in this paper is essentially a combination of the traditional power reaching law and
the exponential reaching law, which is an improvement to the traditional power reaching
law. It can make the state variables of plant reach the designed sliding surface (12) in a
shorter time.

4. Simulation Results. The dynamic model of a spacecraft attitude systems described
in [9] has the same form as (1) and (2) with n = 3, m = 4, in which x = (x1, x2)

T ,

x1 = (x1, x2, x3)
T = (ϕ, θ, ψ)T , x2 = (x4, x5, x6)

T =
(
ϕ̇, θ̇, ψ̇

)T

, u = [u1, u2, u3, u4]
T and

d = [d1, d2, d3]
T , where ϕ, θ and ψ are Eulers angles for the x, y, and z axes, respectively.
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u denote actuators, providing the force torques by reaction wheels or thrusters in four
directions, and f(x) and G(x) are computed as follows:

G =

 0.67 0.67 0.67 0.67
0.69 −0.69 −0.69 0.69
0.28 0.28 −0.28 −0.28


f1(x) = ω0x6cx3cx2 − ω0x5sx3sx2 +

Iy − Iz
Ix

[
x5x6 + ω0x5cx1sx3sx2 + ω0x5cx3sx1

+ ω0x6cx3cx1 +
1

2
ω2

0s(2x3)c
2x1sx2 +

1

2
ω2

0c
2x3s(2x1) − ω0x6sx3sx2sx1

− 1

2
ω2

0s
2x2s

2x3s(2x1) −
1

2
ω2

0s(2x3)sx2s
2x1 −

3

2
ω2

0c
2x2s(2x1)

]
f2(x) = ω0x6sx3cx1 + ω0x4cx3sx1 + ω0x6cx3sx2sx1 + ω0x5sx3cx2sx1 + ω0x4sx3sx2cx1

+
Iz − Ix
Iy

[
x4x6 + ω0x4cx1sx3sx2 + ω0x4cx3sx1 − ω0x6sx3cx2

− 1

2
ω2

0s(2x2)s
2x3cx1 −

1

2
ω2

0cx2sx1s(2x3) +
3

2
ω2

0s(2x2)cx1

]
f3(x) = ω0x4sx1sx3sx2 − ω0x6cx1cx3sx2 − ω0x5cx1sx3cx2 + ω0x6sx3sx1 − ω0x4cx3cx1

+
Ix − Iy
Iz

[
x4x5 + ω0x4cx3cx1 − ω0x4sx3sx2sx1 − ω0x5sx3cx2

− 1

2
ω2

0s(2x3)cx2cx1 +
1

2
ω2

0s
2x3sx1s(2x2) −

3

2
ω2

0s(2x2)sx1

]
where Ix, Iy, and Iz are the moments of inertia with respect to the three body axes, ω0

denotes the constant orbital rate, and c and s denote the cos and sin functions, respec-
tively.

The original condition and disturbance model are chosen as x(0) = (−0.6, 0.3,−0.02,
−0.1,−0.1,−0.07)T and d = 0.05 · (sin(t), cos(2t), sin(3t))T N·m, respectively. Suppose
that the actuator u2 fails to work at t = 4s. In order to eliminate the chattering phenomena
in the proposed FTC scheme, the saturation function (25) can replace the sign function.
Other parameters are designed as follows: ς = p = 0.002, l1 = 0.5I3, l2 = 0.5I3, m = 3,
n = 5, ϑ1 = 10I3, ϑ2 = I3, ϵ = 0.0001.

In the simulation, the fault diagnosis approach developed in [9] can be used to obtain
the estimated value of unknown actuator fault. It was shown that the observer described
by Equations (10) and (11) in [9] can estimate the output value of the faulty actuator.
The corresponding simulation comparisons are given in this section between the FTC
method proposed in this paper and the FTC result proposed in [7]. Figures 1 and 2 show
the system state output response curves, which indicate that the proposed ANFTSMC-
based fault tolerant controller has a good fault tolerant capability under actuator fault
case, compared to the NFTSMC proposed in [7], and ANFTSMC in this paper results
in the faster state convergence rate. Figures 3 and 4 show the three sliding variables
and four control inputs responses curves, respectively. In Figure 3, the FTC controller
developed in this paper can make the state variables reach the sliding surface in a finite
time, and the time is shorter than NFTSMC in [7]. In Figure 4, the ANFTSMC-based
FTC approach provides smooth control inputs compared with the result obtained in [7].
From the simulation results, it can demonstrate the benefit of the FTC scheme proposed
in this study.

5. Conclusions. In this paper, the FTC problem for a class of nonlinear control sys-
tems is studied based on a novel ANFTSMC method. The finite time convergence of all
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Figure 1. The system states output response curves of x1, x2, x3
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Figure 2. The system states output response curves of x4, x5, x6

closed-loop signals has been proved using Lyapunov approach. The design novel sliding
mode surface can avoid potential singularity phenomena that exist in traditional faster
terminal sliding mode surface. Finally, simulation example on spacecraft attitude systems
demonstrates the superiority of our FTC approach. In our future study, we will try to
design a finite time fault tolerant controller against actuator saturation for the faulty
nonlinear control systems.
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