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Abstract. In this paper, the modified KdV equation: ut + u2ux + uxxx = 0, which
exhibits solitary solutions, will be investigated. Explicit exact solitary solutions of the
equation are obtained via Adomian decomposition method and symbolic computation sys-
tem, Maple.
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1. Introduction. Since the discovery of the soliton in 1965 by Zabusky and Kruskal, a
large new domain of mathematical physics has developed. It is generally called the soliton
theory. Constructing exact solutions for nonlinear equations in mathematical physics has
long been a major concern for both mathematicians and physicists. Many nonlinear PDE’s
appear in condensed matter, solid state physics, fluid mechanics, chemical kinetics, plasma
physics, nonlinear optics, propagation of fluxions in Josephon, theory of turbulence, ocean
dynamics, biophysics and star formation and many other fields.

Explicit analytical solutions to the nonlinear equations are of fundamental importance.
Various methods have been proposed to find explicit solutions to nonlinear evolution
equations. Among them there are Hirota’s dependent variable transformation method
[1], sine-cosine method [2], the tanh-sech method [3], homogeneous balance method [4],
Painlevé expansion, improved tanh-function method [5], Exp-function method [6], the
Bäcklund transform method [7] and so on. A common idea for all these methods is that
the equation is reduced by employing the transforms into simple equation that can be
solved directly. Unlike these methods, the nonlinear equations are solved easily with-
out transforms by using Adomian decomposition method. The Adomian decomposition
method [8-10] provides the solution in the form of a rapidly convergent series that may give
rise to the exact solution. In 2002, Wazwaz [11,12] has successfully used the decomposi-
tion method to construct solitary solutions for many nonlinear equations. In recent years,
many researchers [13-18] have also given the solutions for nonlinear or linear equations by
using Adomian decomposition method.

In this paper we would like to extend Adomian decomposition method to seek exact
solutions for the modified KdV equation:

ut + u2ux + uxxx = 0. (1)

The rest of this paper is organized as follows. In Section 2, we present the concrete
scheme of the decomposition method for the modified KdV equation. In Section 3, the
method is used to seek compactons for the MKdV equation: ut + u2ux + uxxx = 0 with
the given initial condition. In Section 4, numerical results for the modofied KdV equation
have been given. We conclude the paper in the last section.
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2. The Adomian Decomposition Method for Solving (1). Consider nonlinear dif-
ferential equation:

Lu + Ru + Nu = 0, (2)

where L is easily invertible linear differential operator and R is the reminder of the linear
operator, and Nu represents the nonlinear term. If we apply the inverse operator L−1 to
both sides of (2), then we can obtain

L−1Lu = −L−1(Ru) − L−1(Nu). (3)

As one special case of (2), (1) can be written as Lu = −Nu, where

L =
∂

∂t
, Nu = u2ux + uxxx. (4)

L−1 is given by the following:

L−1(·) =

∫ t

0

(·)dt. (5)

Applying the integral operator L−1 to both sides of (1), and using the given initial con-
dition, we obtain

u(x, t) = f(x) − L−1
(
u2ux + uxxx

)
, (6)

where f(x) is the function that arises from the given initial condition that is assumed to
be prescribed. Adomian decomposition method [8-10] decomposes the unknown function
u(x, t) by a series of components

u(x, t) =
∞∑

k=0

uk(x, t), (7)

where the components u0, u1, u2, . . . are usually determined recursively. The nonlinear
terms F (u) = u2ux +uxxx can be decomposed into one infinite series of polynomials given
by

F (u) = u2ux + uxxx =
∞∑

k=0

Ak, (8)

where Ak are the so-called Adomian polynomials that can be calculated for all forms of
nonlinearity according to algorithms set by Adomian [8-10]. Adomian polynomials are
defined by

Ak =
1

k!

dk

dλk

[
F

(
∞∑
i=0

λiui

)]
λ=0

, k = 0, 1, 2, . . . (9)

Substituting (7) and (8) into (6) gives rise to

∞∑
k=0

uk(x, t) = f(x) − L−1

(
∞∑

k=0

Ak

)
. (10)

To determine the components uk(x, t), k ≥ 0, we employ the recursive relation

u0(x, t) = f(x),

uk+1(x, t) = −L−1(Ak), k ≥ 0,

}
(11)

where Ak are the Adomian polynomials that represent the nonlinear terms u2ux + uxxx

and can be derived by

A0 = u2
0(u0)x + (u0)xxx,

A1 = 2u0(u0)xu1 + u2
0(u1)x + (u1)xxx,

A2 = u2
1(u0)x + 2u0(u1)xu1 + 2u0(u0)xu2 + u2

0(u2)x + (u2)xxx,
. . .

 (12)
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In view of (11) and (12), we know that all of the components uk(x, t) can be calculated,
and the series solution of u(x, t) follows immediately. The series solution may provide the
solution in a closed form if an exact solution exists.

3. Exact Solutions of the Modified KdV Equation. We consider the modified KdV
equation with the initial condition:

ut + u2ux + uxxx = 0, u(x, 0) =
√

6k sech(kx) (13)

where k is an arbitrary constant. Applying the integral operator L−1 to both sides of (13)
yields

u(x, t) =
√

6k sech(kx) − L−1
(
u2ux + uxxx

)
. (14)

Substituting the decomposition series (7) for u(x, t) into (14) yields

∞∑
k=0

uk(x, t) =
√

6k sech(kx) − L−1

(
∞∑

k=0

Ak

)
, (15)

where Ak are Adomian polynomials that represent the nonlinear terms u2ux + uxxx. Ac-
cording to the above-mentioned Aomian decomposition method, we have the recursive
relation

u0(x, t) =
√

6k sech(kx), uk+1(x, t) = −L−1Ak, k ≥ 0. (16)

Substituting (12) into (16) gives

u0(x, t) =
√

6k sech(kx)

u1(x, t) = −L−1A0 = −L−1

(
−k4

√
6 sinh(kx)

cosh2(kx)

)
=

k4
√

6 sinh(kx)

cosh2(kx)
t

u2(x, t) = −L−1A1 = −L−1

(
−

k7
√

6t
(
−2 + cosh2(kx)

)
cosh3(kx)

)

=
k7
√

6
(
−2 + cosh2(kx)

)
2 cosh3(kx)

t2

u3(x, t) = −L−1A2 = −L−1

(
−

k10
√

6t2 sinh(kx)
(
−6 + cosh2(kx)

)
2 cosh4(kx)

)

=
k10

√
6 sinh(kx)

(
−6 + cosh2(kx)

)
6 cosh4(kx)

t3

. . .



(17)

Thus, this gives the solution of (13) in a series form

u(x, t) =
√

6k sech(kx) +
k4
√

6 sinh(kx)

cosh2(kx)
t +

k7
√

6
(
−2 + cosh2(kx)

)
2 cosh3(kx)

t2

+
k10

√
6 sinh(kx)

(
−6 + cosh2(kx)

)
6 cosh4(kx)

t3 + · · ·

 (18)

Using Taylor series into (18), we obtain the closed form solution

u(x, t) =
√

6k sech
(
k
(
x − k2t

))
. (19)

It is an exact solution for the MKdV Equation (1).
In additional, we can get more exact solutions by adding a constant to the argument

in (19). In other words, we introduce the exact solutions

u(x, t) =
√

6k sech
(
k
(
x − k2t

)
+ c
)

(20)
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where c is a constant.
These closed form solutions are single-soliton solutions. In order to show that how

the Aomian decomposition method is computationally efficient in the course of obtaining
single-soliton solutions for Equation (13), we will give detailed numerical solitary solution
and the corresponding graphs of solitary in the following section.

4. Numerical Results for the Modified KdV Equation. For numerical compar-
isons, we consider the approximate solution for modified KdV Equation (13). Based
on the Adomian decomposition method, we evaluate the approximate solution using the
n-term approximation, i.e.,

Zn = u0(x, t) + u1(x, t) + u2(x, t) + u3(x, t) + · · · + un−1(x, t). (21)

Table 1 shows the exact solution, approximate solution and the absolute error between
them for k = 2 and n = 5. We display the approximate numerical solution Z5 of Equation
(13) in Figure 1, as well as the corresponding numerically exact solution u(x, t) in Figure
2 when k = 2.

Table 1. The exact solution, approximate solution, absolute error as k = 2

xi ti Exact solution u(x, t) Approximate solution Z5 Absolute error | u(x, t) − Z5 |
5 0.3 0.004903401383831 0.004903201303751 0.200080079999602e-06
5 0.2 0.002203240704845 0.002203131704946 0.108999898999936e-06
5 0.1 9.899799035609665e-04 9.899799036806766e-04 −0.000000119710014e-06
4 0.3 0.036231021544848 0.036231030564749 −0.090199009997183e-07
4 0.2 0.016279825045851 0.016279755037653 0.700081980026246e-07
4 0.1 0.007315013041587 0.007315025143789 −0.121022020000902e-07
3 0.3 0.267516987091128 0.267516698113136 0.288977991980133e-06
3 0.2 0.120274743263007 0.120274694283238 0.048979768990653e-06
3 0.1 0.054049426997956 0.054049506878748 −0.079880792001885e-06
2 0.3 1.900697193042293 1.900697204236156 −0.011193863169723e-06
2 0.2 0.881595476503612 0.881595500914532 −0.024410919952089e-06
2 0.1 0.398723899557676 0.398723653868795 0.245688881017614e-06
1 0.3 4.531592530882302 4.531592469031895 0.618504074623161e-07
1 0.2 4.531592530882302 4.531592481763298 0.491190039753064e-07
1 0.1 2.705638539971261 2.705638547800867 −0.078296058525495e-07

Numerical approximations show a high degree of accuracy for approximate solution Zn

for low values of n. The solution for modified KdV Equation (13) converges very rapidly
by using the Adomian decomposition method. The numerical results also demonstrate the
advantage of this method that has accurate approximation with few terms. Last but not
least, Adomian decomposition method is not affected by computational round-off errors,
and it is not confronted with the necessity for larger computer memory and time.

5. Conclusions. In summary, we have presented a scheme to obtain solutions of the
MKdV equation by using the known Adomian decomposition method. Adomian decom-
position method was employed successfully to develop exact solution for the modified KdV
equation. The computations associated with the explicit exact solitary solutions discussed
above were performed by using symbolic computation system, Maple. Perhaps other soli-
tary solutions of the MKdV equation may be constructed by using the decomposition
method.
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Figure 1. Approximate solution
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Figure 2. Exact solution
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