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Abstract. In this paper, the chaos synchronization problem between the Lorenz chaotic
system as the leader system and the Rössler chaotic system as the follower system is ad-
dressed. During this paper, the parameters of the Lorenz chaotic system are considered
unknown and are estimated by the parameter of the Rössler chaotic system. An adaptive
control law and a parameter estimation law are presented based on the modified projec-
tive synchronization (MPS) and Lyapunov candidate theorem. Then, the validity of the
proposed method is studied by Lyapunov stability theorem, analytically. After that, some
numerical simulations are carried out to show the effectiveness of the proposed method.
The numerical results verify the accuracy and convergence speed of the proposed method.
Keywords: Rössler chaotic system, Lorenz chaotic system, Lyapunov stability theorem

1. Introduction. Chaos synchronization problem between two (hyper) chaotic systems
have been widely investigated by the researchers, due to its vast applications in many sci-
entific areas, including physics, chemistry, electronics and secure communications. Up to
now, many synchronization methods have been designed and investigated to perform syn-
chronization task between two identical/non-identical chaotic systems. Active method
[1,2], adaptive method [3-5], backstepping method [6,7], generalized method [8], phase
method [9,10], sliding method [11-13] and projective method [14-17] are some of them.
Among the numerous synchronization schemes by researchers, projective synchronization
has been extensively noticed due to its proportional system errors up to a scaling factor.
The follower chaotic system state variables can track the motion trajectories of the leader
chaotic system by a scaling factor. Projective synchronization includes many synchroniza-
tion methods. When scaling factor is set to +1, complete synchronization (CS) achieves.
On the other hand, when the scaling factor is set to −1, anti-synchronization (AS) would
be achieved. When the scaling function is a diagonal matrix with different elements in
its diagonals, modified projective synchronization (MPS) achieves [18-22]. Furthermore,
when the diagonal elements of the scaling matrix are functions of time t, the modified
function synchronization (MFS) achieves.

In this paper, the synchronization problem between a typical Lorenz chaotic system as
the leader system and a Rössler chaotic system as the follower system is studied via MPS
method. The main highlights of this paper are as follows.

• A new adaptive modified projective synchronization scheme is derived to achieve
synchronization.

• Stability analysis of the proposed method is verified by means of Lyapunov stability
theorem.

• Some numerical simulations are performed to validate the analytical discussions.
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The rest of this paper is organized as follows. In Section 2, the synchronization problem
between Lorenz chaotic system and Rössler chaotic system is addressed. An adaptive
feedback controller and a parameter estimation strategy are introduced based on the
Lyapunov stability theorem. After that, in Section 3, some numerical simulations are given
to verify the theoretical discussions of the proposed method. Finally, some concluding
remarks are given in Section 4.

2. MPS Method. In this section, the Lorenz chaotic system and the Rössler chaotic
systems are described. Furthermore, and their chaotic behavior is shown by some figures. ẋ1 = −ax1 + ax2

ẋ2 = bx1 − x2 − x1x3

ẋ3 = x1x2 − cx3

(1)

The phase portrait of the dynamical Lorenz system (1) is shown in Figure 1, with
system parameters a = 11, b = 27 and c = 2.7. It is clear, from these figures that the
behavior of the Lorenz system is chaotic.

Figure 1. Time portrait of the Lorenz chaotic system

Rössler in [24] proposed a chaotic attractor that can be presented by a three simple
nonlinear integer-based differential equations that depends on the three positive coefficient
parameters as follows:

ẏ1 = −(y2 + y3)

ẏ2 = y1 + ay2

ẏ3 = b + y3(y1 − c)

(2)

where ẏ1, ẏ2 and ẏ3 are the time derivatives of the state variables y1, y2 and y3 of the
chaotic system, respectively. The parameters of the system are denoted by a, b and c.
The dynamical Rössler system (1) shows chaotic behavior for a wide variety amount of
initial state values.
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Figure 2. Time portrait of the Rössler chaotic system

The phase portrait of the dynamical Rössler system (2) is shown in Figure 2, with
system parameters a = 0.2, b = 0.2 and c = 5.7. It is clear, from these figures that the
behavior of the Rössler system (2) is chaotic.

Consider the Lorenz chaotic system (1) as the leader chaotic system. Then its follower
chaotic system can be described based on the Rössler chaotic system (2) as follows:

ẏ1 = −(y2 + y3) + u1

ẏ2 = y1 + (a + ∆a)y2 + u2

ẏ3 = (b + ∆b) + y3(y1 − (c + ∆c)) + u3

(3)

where ∆a, ∆b and ∆c indicate the amount of disparity of the unknown system parameters
a, b and c in the leader chaotic system (1), respectively. u1, u2 and u3 denote the feedback
controllers, which have to be designed. Let the leader and follower system errors be:

e1 = y1 − σ1x1

e2 = y2 − σ2x2

e3 = y3 − σ3x3

(4)

where σ1, σ2 and σ3 are the modified projective scaling factors, which align the synchro-
nization between the leader chaotic system (1) and the follower system (2). Then the
dynamical representation of system errors (4) can be obtained as follows:

ė1 = ẏ1 − σ1ẋ1

ė2 = ẏ2 − σ2ẋ2

ė3 = ẏ3 − σ3ẋ3

(5)

The ultimate goal of chaos synchronization is to design a control law and necessary
parameter estimation law, in such way to force the state variables of the follower chaotic
system (3) to track the motion trajectories of the leader chaotic system (1). In other
word, the synchronization errors (3) converge to zero, meanly,

lim
t→∞

ei = lim
t→∞

(yi − σixi) = 0

In the following theorem a new feedback controller and a parameter estimation law are
given to provide the leader and follower synchronization practically.

Theorem 2.1. The Lorenz chaotic system (1) with unknown state variables x1, x2 and
x3 and unknown system parameters a, b, c is globally and exponentially synchronized by
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considering the modified projective synchronization errors defined in (4) and the controller
and parameter estimation laws are defined as follows:

u1(t) = y2 + y3 + σ1(a + ∆a)(x2 − x1) − k1e1

u2(t) = −y1 − (a + ∆a)y2 + σ2((b + ∆b)x1 − x2 − x1x3) − k2e2

u3(t) = −(b + ∆b) − y3(y1 − (c + ∆c)) + σ3(x1x2 − (c + ∆c)) − k3e3

(6)

and,

∆̇a = −e1σ1∆a(x2 − x1)

∆̇b = −e2σ2∆bx1

∆̇c = +e3σ3∆cx3

(7)

where ∆a, ∆b and ∆c are the disparity amount of the system parameters.

Proof: System errors stability is a sufficient condition for synchronization task of
leader Lorenz choatic system (1) and the follower Rössler chaotic system (3). To this end,
a typical Lyapunov candidate function is provided based on system errors and parmaeter
estimation errors. Let us consider the Lyapunov candidate function as follows:

V (t) =
1

2

(
e2
1 + e2

2 + e2
3 + (∆a)2 + (∆b)2 + (∆c)2

)
(8)

It is clear that V is positive definite. The time derivative of the Lyapunov candidate
function (8) can be described as follows:

V̇ = e1ė1 + e2ė2 + e3ė3 + ∆a∆′a + ∆b∆′b + ∆c∆′c (9)

With substituting the dynamical error system (5) and the proposed controller (6) and the
parameter estimation (7), the dynamical Equation (9) can be simplified as follows:

V̇ = −k1e
2
1 − k2e

2
2 − k3e

2
3 − ϕ1(∆a)2 − ϕ2(∆b)2 − ϕ3(∆c)2 (10)

When ki (i = 1, 2, 3) and ϕi (i = 1, 2, 3) are positive constants, the dynamical represen-
tation of the Lyapunov candidate function (10) is negative definite. This means that the
anticipated synchronization between the leader Lorenz chaotic system (1) and the follower
Rössler chaotic system (3) will be achieved, based on the Lyapunov stability theorem. So
the theorem is proved, namely, lim |Es(t)| → 0 as time tends to infinity.

3. Numerical Simulations. The ultimate goal of numerical simulation is to verify the
effectiveness of the proposed method for synchronization of chaotic systems. Therefore,
some numerical simulations related to the synchronization of two chaotis systems: Lorenz
chaotic system as the leader system and the Rössler chaotic system as the follower system
are given.

The proposed program uses the fourth-order Runge-Kutta integration method with
a fixed time-step size and a tolerance of 1.0E−6. The program benefits the adaptive-
projective feedback control presented in (6), the dynamical system for parameter estima-
tion in (7) and the dynamical error system presented in (4) for simulation purpose.

Let the attractor parameteres be a = 0.2, b = 0.2, and c = 5.7, and the initial values
of the estimated follower attractor are set as: ∆a = 0.4, ∆b = 0.1 and ∆c = 0.3.

The initial state values for the leader attractor are: x1(0) = 2, x2(0) = 1 and x3(0) = 5.
Let us take the follower initial state values as: y1(0) = 5, y2(0) = −2 and y3(0) = 3. So the
initial differences between leader and follower state attractors are (e1(0), e2(0), e3(0)) =
(5 − 2δ1,−2 − δ2, 3 − 5δ3), where α is projective constant factor.

The constants (gains) values are all taken as ki = 2 (∀i = 1, . . . , 3) and also ϕi = 1.5
(∀i = 1, . . . , 3). Some simulation results extracted from this section are shown in Figures
3 to 5. All simulations are carried out from t = 0s to t = 10s. The MPS between the
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(a) State variables trajectories (b) Parameter estimation errors

Figure 3. MPS of the Lorenz chaotic system and the Rössler chaotic sys-
tem with projective scaling factor δ1 = (1, 1, 1)

(a) State variables trajectories (b) Parameter estimation errors

Figure 4. MPS of the Lorenz chaotic system and the Rössler chaotic sys-
tem with projective scaling factor δ2 = (1 + ε1t, 1 + ε2t, 1 + ε3t)

Lorenz chaotic system and the Rössler chaotic system is performed by three different
scaling factors δ1, δ2 and δ3 as follows:

δ1 = (1, 1, 1)
δ2 = (1 + ε1t, 1 + ε2t, 1 + ε3t)
δ3 = (1 + 0.01 sin(ε1t), 1 + 0.03 sin(ε2t), 1 + 0.2 sin(ε3t))

where ε1 = 0.001, ε2 = 0.0002 and ε3 = 0.001. Figure 3(a) shows the behavior of the
state variables of the Lorenz chaotic system (1) and Rössler chaotic system (3) along the
time with projective scaling factor as δ1 = (σ1, σ2, σ3) = (1, 1, 1). In addition, the errors
estimation of the system parameters is depicted in Figure 3(b). It is clear that the disparity
amount of the system parameters ∆a, ∆b and ∆c converges to the zero. Furthermore,
in a similar manner, the behavior of the state variables of the Lorenz chaotic system (1)
and Rössler chaotic system (3) and also the disparity amount of system parameteters are
shown in Figures 4 and 5, for scaling factors δ2 and δ3, respectively.

4. Conclusions. In this paper, an adaptive modified projective synchronization (MPS)
method for synchronization of Lorenz chaotic system as the drive system and the Rössler
chaotic system as the response system is studied. The parameters of the drive chaotic
system are considered unknown. An appropriated feedback control law and a parameter



1208 H. TIRANDAZ

(a) State variables trajectories (b) Parameter estimation errors

Figure 5. MPS of the Lorenz chaotic system and the Rössler chaotic sys-
tem with projective scaling factor δ3 = (1+0.01 sin(ε1t), 1+0.03 sin(ε2t), 1+
0.2 sin(ε3t))

estimation law are derived based on the Lyapunov stability theorem and the adaptive
control theorem. Then, numerical simulations are carried out to verify the effectiveness
method. As it can be seen from the simulated results, the anticipated drive-response
synchronization is achieved and the synchronization errors of the system parameters and
also errors form the disparity amount of system parameters tend to zero as time goes to
the infinity.
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