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Abstract. The stress-strength model has substantial interest and usefulness in various
areas of engineering, psychology, genetics and clinical trials. The generalized exponen-
tial distribution can be used quite effectively to analyze skewed data sets. In addition,
comparing the performance of products in the quality testing experiment, progressive type
II right censoring scheme is quite useful in many practical situations where budget con-
straints are in place or there is a demand for rapid testing. This study constructs a
maximum likelihood estimator (MLE) of R = P [X > Y ] when the quality characters
of two products X and Y are independent generalized exponential distribution with the
progressive type II right censored sample. The MLE of R = P [X > Y ] is then utilized
to develop the new hypothesis testing procedure. Moreover, the new testing procedure can
be employed by managers to assess whether X is superior to Y in quality performance.
Finally, one numerical example is utilized to illustrate the use of the testing procedure.
Keywords: Progressive censored sample, Generalized exponential distribution, Maxi-
mum likelihood estimator

1. Introduction. The stress-strength model has substantial interest and usefulness in
various areas of engineering, psychology, genetics and clinical trials (see [1]). This model
involves two independent random variables X and Y , and the probability R = P [X > Y ],
for example, (a) in mechanical reliability of a system, if X is the strength of a system which
is subject to stress Y , then R is a measure of performance for the system. The system
fails, if the applied stress is greater than its strength at anytime; (b) if Y represents a
patient’s survival time when he is treated with drug A and X represents another patient’s
survival time when he is treated with drug B, then drug B could be preferred to drug A if
R = P [X > Y ] > 0.5 (see [2]); (c) if X and Y represent lifetimes of two devices, then R is
the probability that the lifetime X is greater than the lifetime Y (see [3]). The problem of
estimating of R = P [X > Y ] has been widely used in much related statistical literatures,
for example, exponential distribution (see [3,4]), Weibull distribution (see [2,5-7]), and
generalized exponential distribution (see [8-10]). The theoretical and practical results on
the theory and applications of the stress-strength relationships in industrial and economic
systems during the last decades are collected and digested in [1].

The generalized exponential distribution was introduced by [11,12]. The generalized
exponential distribution with the shape parameter θ and the scale parameter λ will be
denoted by GE(θ, λ) and the corresponding probability density function (p.d.f.) and the

1135



1136 C.-W. HONG AND J.-W. WU

cumulative distribution function (c.d.f.) are as follows respectively:

f(x) =
θ

λ

[
1 − exp

(
−x

λ

)]θ−1

exp
(
−x

λ

)
, x > 0, θ > 0, λ > 0, (1)

and

F (x) =
[
1 − exp

(
−x

λ

)]θ
, x > 0, θ > 0, λ > 0, (2)

where θ is the shape parameter and λ is the scale parameter. For θ = 1, the generalized
exponential distribution reduces to the exponential distribution with mean λ. For θ ≤ 1,
the probability density function is a strictly decreasing function and for θ > 1, it has a
unimodal shape. These probability density functions are illustrated in [12]. It is clear
that the probability density functions of generalized exponential distribution are always
right skewed and it is observed that the generalized exponential distribution can be used
quite effectively to analyze skewed data sets (see [11,13]).

In this paper, we consider the case of the progressive type II right censoring. Progressive
type II right censoring is a useful scheme in which a specific fraction of individuals at
risk may be removed from the experiment at each of several ordered failure times (see
[14]). The experimenter can remove units from a life test at various stages during the
experiments, possibly resulting in a saving of costs and times (see [15]). The familiar
complete and type II right censored samples are special cases of this scheme. A schematic
illustration is depicted as follows, where x1,n, x2,n, . . . , xm,n denote the observed failure
times and R1, R2, . . . , Rm denote the corresponding numbers of units removed (withdrawn)
from the test. Let m be the number of failures observed before termination and x1,n ≤
x2,n ≤ · · · ≤ xm,n be the observed ordered lifetimes. Let Ri denote the number of units

removed at the time of the ith failure, 0 ≤ Ri ≤ n −
i−1∑
j=1

Rj − i, i = 2, 3, . . . ,m − 1, with

0 ≤ R1 ≤ n − 1 and Rm = n −
m−1∑
j=1

Rj − m, where Ri’s and m are prespecified integers

(see [16]).
To utilize the probability R = P [X > Y ] in assessing the quality performance of

products more generally and accurately. This study constructs a maximum likelihood
estimator (MLE) of R = P [X > Y ] when the quality characters of two products X
and Y are independent generalized exponential distribution with the progressive type II
right censored sample. The MLE of R = P [X > Y ] is then utilized to develop the new
hypothesis testing procedure. Moreover, the new testing procedure can be employed by
managers to assess whether X is superior to Y in quality performance.

The rest of this paper is organized as follows. Section 2 presents the MLE of R =
P [X > Y ] under X ∼ GE(θ1, λ) and Y ∼ GE(θ2, λ), respectively. Section 3 develops a
confidence interval of R = P [X > Y ] and a new hypothesis testing procedure. Finally,
one numerical example and concluding remarks are made in Section 4 and Section 5,
respectively.

2. The Maximum Likelihood Estimator of R. Suppose that the quality characters
of two products X and Y follow GE(θ1, λ) and GE(θ2, λ), respectively, where X and Y
are independent random variables. Therefore, by using (1), we obtain

R = P [X > Y ] =
θ1

θ1 + θ2

. (3)

Next, let X1,n1 ≤ X2,n1 ≤ · · · ≤ Xm1,n1 be the corresponding progressive type II right cen-
sored sample from GE(θ1, λ) with progressive censoring scheme R∗ = (R1, R2, . . . , Rm1)
and Y1,n2 ≤ Y2,n2 ≤ · · · ≤ Ym2, n2 be the corresponding progressive type II right censored
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sample from GE(θ2, λ) with progressive censoring scheme R′ = (R′
1, R

′
2, · · · , R′

m2
). Then

the log-likelihood function of the progressive type II right censored sample is given by

ln L(Λ) = ln C1 + ln C2 + m1 ln θ1 + m2 ln θ2 − (m1 + m2) ln λ

+ (θ1 − 1)

m1∑
i=1

ln
(
1 − exp

(
−xi,n1

λ

))
−

m1∑
i=1

xi,n1

λ

+
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i=1

Ri ln

[
1 −

(
1 − exp

(
−xi,n1

λ

))θ1
]

+ (θ2 − 1)
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ln
(
1 − exp

(
−yj,n2

λ

))
−

m2∑
j=1

yj,n2

λ

+

m2∑
j=1

R′
i ln

[
1 −

(
1 − exp

(
−yj,n2

λ

))θ2
]
,

(4)

where Λ = (θ1, θ2, λ), C1 = n1(n1 − R1 − 1) · · · (n1 − R1 − R2 − · · · − Rm1−1 − m1 + 1),
C2 = n2(n2−R′

1−1) · · · (n2−R′
1−R′

2−· · ·−R′
m2−1−m2+1), x1,n1 ≤ x2,n1 ≤ · · · ≤ xm1,n1 ,

y1,n2 ≤ y2,n2 ≤ · · · ≤ ym2, n2 . Since θ1, θ2 and λ are unknown, by solving the equations
∂ ln L(Λ)

∂θ1
= 0, ∂ ln L(Λ)

∂θ2
= 0 and ∂ ln L(Λ)

∂λ
= 0, we obtain that the MLEs θ̂1, θ̂2 and λ̂ satisfy

the following nonlinear Equations (5), (6) and (7) as given by

m1

θ̂1

+
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i=1
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(
1 − exp

(
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))
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(5)
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(7)
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By using the invariance of MLE (see [17]), the MLE R̂ of R can be written as

R̂ =
θ̂1

θ̂1 + θ̂2

, (8)

where the MLEs θ̂1, θ̂2 and λ̂ can also be found by gradient descent numerical method to
solve the nonlinear Equations (5), (6) and (7) (see [18]).

The asymptotic normal distribution for the R̂ can be obtained in large sample theory.
From the log-likelihood function in (4), we have

∂2 ln L(Λ)

∂θ2
1

= −m1

θ2
1

−
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]2 , (9)

∂2 ln L(Λ)
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∂2 ln L(Λ)
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By using [19], the Fisher information matrix is given by

I(Λ) = [Iij(Λ)]3×3, (15)

where I11(Λ) = E
(
−∂2 ln L(Λ)

∂θ2
1

)
, I12(Λ) = I21(Λ) = E

(
−∂2 ln L(Λ)

∂θ1∂θ2

)
, I13(Λ) = I31(Λ) =

E
(
−∂2 ln L(Λ)

∂θ1∂λ

)
, I22(Λ) = E

(
−∂2 ln L(Λ)

∂θ2
2

)
, I23(Λ) = I32(Λ) = E

(
−∂2 ln L(Λ)

∂θ2∂λ

)
, I33(Λ) =

E
(
−∂2 ln L(Λ)

∂λ2

)
. Under some regularity conditions (see [20]), Λ̂ is asymptotically trivariate

normal distribution with mean Λ and covariance matrix I−1(Λ), i.e., Λ̂
D→N(Λ, I−1(Λ)).

Let R = θ1

θ1+θ2
= g(θ1, θ2, λ) = g(Λ), by the delta method (see [21]), we have

R̂
D−→ N

(
R, V ar(R̂)

)
, (16)

where V ar
(
R̂
)

= JI−1(Λ)J ′, J =
[

∂g(Λ)
∂θ1

, ∂g(Λ)
∂θ2

, ∂g(Λ)
∂λ

]
, ∂g(Λ)

∂θ1
= θ2

(θ1+θ2)2
, ∂g(Λ)

∂θ2
= − θ1

(θ1+θ2)2
,

∂g(Λ)
∂λ

= 0 and I(Λ) as the above definition.

3. The Confidence Interval of R. Owing to the sampling error, the point estimate of
the measure of performance R cannot be employed directly to determine whether X is
superior to Y in quality performance. Thus, a confidence interval is needed to objectively
assess whether X is superior to Y in quality performance. Given the specified significance
level α∗, the level 100(1 − α∗)% confidence interval and one-sided confidence interval for
R can be derived as follows.

With the pivotal quantity R̂−R√
V ar(R̂)

and by using the asympotic result of [22, p.549], so

we can obtain
R̂ − R√
V̂ ar(R̂)

D−→ N (0, 1) , (17)

where V̂ ar(R̂) = J I−1
0 (Λ)J ′

∣∣
Λ=Λ̂

, J =
[

∂g(Λ)
∂θ1

, ∂g(Λ)
∂θ2

, ∂g(Λ)
∂λ

]
and I0(Λ) =

[
I∗
ij(Λ)

]
3×3

, I∗
11(Λ)

= −∂2 ln L(Λ)

∂θ2
1

, I∗
12(Λ) = I∗

21(Λ) = −∂2 ln L(Λ)
∂θ1∂θ2

, I∗
13(Λ) = I∗

31(Λ) = −∂2 ln L(Λ)
∂θ1∂λ

, I∗
22(Λ) =(

−∂2 ln L(Λ)

∂θ2
2

)
, I∗

23(Λ) = I∗
32(Λ) = −∂2 ln L(Λ)

∂θ2∂λ
, I∗

33(Λ) = −∂2 ln L(Λ)
∂λ2 .

Hence, we can know the level 100 (1 − α∗)% confidence interval for R as given by(
R̂ − Zα∗/2

√
V̂ ar

(
R̂
)
, R̂ + Zα∗/2

√
V̂ ar

(
R̂
))

, (18)

where Zα∗ represents the lower 100 (1−α∗)%th percentile of standard normal distribution.
We can then employ the level 100 (1−α∗)% confidence interval to test whether R ̸= R0 in
large sample. The hypothesis of the proposed testing procedure about R can be organized
as the null hypothesis H0 : R = R0 and the alternative hypothesis H1 : R ̸= R0, where in
general, given R0 = 0.5. At the level of significance α∗, the decision rule of statistical test is

“If R0 /∈
(

R̂ − Zα∗/2

√
V̂ ar

(
R̂
)
, R̂ + Zα∗/2

√
V̂ ar

(
R̂
))

, it is concluded that R ̸= R0”. In

addition, we can also construct the level 100 (1−α∗)% one-sided confidence interval to test
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whether R > R0 in large sample. The hypothesis of the proposed testing procedure about
R can be organized as the null hypothesis H0 : R ≤ R0 and the alternative hypothesis
H1 : R > R0, where in general, given R0 = 0.5. At the α∗ level of significance, the decision

rule of statistical test is “If R0 /∈
(

R̂ − Zα∗

√
V̂ ar(R̂), 1

)
, it is concluded that R > R0”.

4. A Numerical Example. In this section, we propose the new hypothesis testing
procedure to a simulation data. One numerical example illustrates the use of the new
hypothesis testing procedure.

Example (Simulated data). We discuss X ∼ GE(θ1, λ) and Y ∼ GE(θ2, λ) with the
unknown scale parameter λ case and the unknown shape parameters θ1 and θ2 case. We
assume that the scale parameter λ of two independent X and Y are identical and unknown
λ, where X (Data Set 1) is simulated data from the generalized exponential distribution
GE(3, 4) with progressive censored schemes R∗ = (0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 2,
2, 0, 2, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1), m1 = 30, n1 = 50 and Y (Data Set 2) is
simulated data from the generalized exponential distribution GE(2, 4) with progressive
censored schemes R′ = (0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0,
0, 0, 0, 0, 2), m2 = 30, n2 = 40.

X (Data Set 1) = {1.25113, 1.38738, 2.81931, 2.94886, 2.95702, 3.01037, 3.18129,
3.24973, 3.30575, 3.52128, 3.64958, 3.67013, 3.75384, 3.98662, 4.52966, 4.65302, 5.02475,
5.09347, 5.22836, 5.51711, 5.58028, 5.69626, 6.76844, 6.83901, 7.74378, 7.80644, 8.94753,
9.99827, 10.8974, 12.0734}.

Y (Data Set 2) = {0.31815, 0.80650, 0.91335, 0.99546, 1.38503, 1.53092, 1.89336,
2.26590, 3.16380, 3.20775, 3.24478, 3.57478, 3.71605, 3.82064, 3.99841, 4.06225, 4.13572,
4.28308, 4.75622, 5.36246, 5.56364, 5.97654, 6.03524, 6.09644, 6.32965, 9.12161, 9.44744,
9.96717, 15.4553, 15.8147}.

By numerical method to solve the nonlinear Equations (5), (6) and (7), we can attain

the maximum likelihood estimates θ̂1 = 3.06943, θ̂2 = 1.83609 and λ̂ = 4.17272. Moreover,
by (8), we have R̂ = 3.06943

3.06943+1.83609
= 0.62571. By (18), the level 95% confidence interval

for R is given by(
R̂ − Z0.025

√
V̂ ar(R̂), R̂ + Z0.025

√
V̂ ar(R̂)

)
= (0.524345, 0.727075)

where Z0.025 = 1.96 and V̂ ar
(
R̂
)

= 0.002674643.

In addition, we also can construct the level 95% one-sided confidence interval for R is
given by (

R̂ − Z0.05

√
V̂ ar(R̂), 1

)
= (0.540636, 1)

where Z0.05 = 1.645 and V̂ ar(R̂) = 0.002674643.
The hypothesis of the proposed testing procedure about R can be organized as the null

hypothesis H0 : R ≤ 0.5 and the alternative hypothesis H1 : R > 0.5. Because of 0.5 /∈
(0.540636, 1), we can reject H0 : R ≤ 0.5, and it is concluded that R = P [X > Y ] > 0.5.
That is, at the 0.05 level of significance, X is superior to Y in tension.

5. Conclusions. In this study, we construct a maximum likelihood estimator (MLE) of
R = P [X > Y ] when the quality characters of two products X and Y are independent
generalized exponential distribution with the progressive type II right censored sample.
The MLE of R = P [X > Y ] is then utilized to develop the new hypothesis testing
procedure. The new testing procedure can be employed by managers to assess whether
X is superior to Y in quality performance. In future research on this problem, it would
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be interesting to deal with the exponentiated Weibull products based on the progressive
type II right censored sample.
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