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Abstract. An analytically derived method with generated information is designed for
dealing with the high-frequency noises and gyro drift of the Human-Motion-Capture Sys-
tem with inertial and magnetic sensors, which is referred to as adaptive hybrid filter
in this paper. To approach the challenges of accuracy and real time performance in
Human-Motion-Capture System, we propose a novel scheme based on the Gauss-Newton
Algorithm and complementary filter. We use a simplified Gauss-Newton Algorithm to
process the accelerometer and magnetic data, which has the advantage of only one itera-
tion calculation to reduce the computation complexity. The sensor fusions between atti-
tude angles from simplified Gauss-Newton Algorithm and gyroscope data are performed
using the complementary filter. Moreover, for promoting adaptability, the gravity vector
and the geomagnetic reference vector are introduced to modify the parameter adaptively.
We have evaluated the proposed scheme in sudden acceleration and magnetic field envi-
ronments. The experimental results have demonstrated that the mean error was 0.94◦ in
magnetic interference state and the mean error was lower than 1◦ in dynamic environ-
ment. Moreover, the algorithm execution time has been reduced by 25% compared with
Extended Kalman Filter, and it has achieved the accurate reproduction of the system.
Keywords: Inertial sensors, Attitude estimation, Gauss-Newton Algorithm, Comple-
mentary filter, Human-Motion-Capture System

1. Introduction. Recent years have witnessed the rapid development and intensive
study of the Human-Motion-Capture System (HMCS). The new technology is widely ap-
plied into effects-driven films, human rehabilitation exercises and other sences. Because
of the high price and limited application scenarios of the matured HMCS based on optical
instruments [1], it has difficulties in popularized engineering and business applications.
So most of the current work has focused on the application of Micro-Electro-Mechanical
System (MEMS) inertial sensors in HMCS. However, the low-frequency drifts of gyroscope
and high-frequency noises of magnetometer affect the final outputs [2]. Therefore, we can
fuse the data by using a stochastic approach and a frequency analysis.

Among the stochastic approaches, sensor fusion methods for orientation estimation de-
termination can be designed using approaches based either on Kalman Filter (KF) or
nonlinear complementary filter. KF is a recursive filter based on time-varying linear sys-
tem [3]. Extended Kalman Filter (EKF) is strict to linear error, local truncation error
and filter divergence [4,5]. Linear Kalman filter can reduce the effect of high frequency
interference on accelerometer and magnetometer [6]. Anti-jamming algorithm based on
Unscented Kalman Filter (UKF) avoids the disadvantage of white noise on attitude reso-
lution [7]. In different application scenarios, KF needs harsh conditions; besides, we need
to establish the appropriate state equations, process equations under different conditions,
requiring a large number of arithmetic operations [8]. A new algorithm of attitude data
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fusion, based on complementary filtering and conjugate gradient-descent method, is used
to improve the convergence speed of the algorithm [9]. Hybrid Filter (HF) combines with
the principle of the gradient descent method and the complementary filtering algorithm
[10], but the adaptability and accuracy are restricted by the quantitative parameter of
complementary filtering.

We propose an Adaptive Hybrid Filter (AHF) based on simplified Gauss-Newton Al-
gorithm (SGNA) and complementary filter to overcome the above challenges. The overall
program is illustrated in Figure 1. Magnetometer data and accelerometer data are pro-
cessed by SGNA. A complementary filter is used to fuse the sensor data, avoiding the in-
terference high frequency noise and gyro drift. In order to raise the dynamic performance
of filter, we use the gravity vector, reference geomagnetic vector to adjust the parameters
of the complementary filter. Moreover, the convergence direction of the SGNA is used as
the observation vector to compensate the gyroscope drift error.

Figure 1. Framework of the proposed algorithm

The rest of paper is organized as follows. Section 1 introduces the algorithm framework.
Section 2 and Section 3 discuss the SGNA and AHF according to the dataflow. Section
4 shows the experimental validation and results. Finally, conclusions are given in Section
5.

2. Simplified Gauss-Newton Algorithm.

2.1. Attitude described by quaternion. The three-axis angular rate data of the gy-
roscope are converted to the form of quaternion, shown as Equation (1). The quaternion
derivation b

eq̇ω describing the rate of change of orientation in the sensor frame relative to
the earth frame can be calculated as Equation (2).

bω =
[

0 ωx ωy ωz

]

(1)

b
eq̇ω =

1

2
b
eq̂⊗ bω (2)

where the left superscript b and subscript e of q̇ω imply that the corresponding vectors are
expressed in the sensor and earth frame coordinates, respectively, and b

eq̂ is the rotation
matrix of the sensor frame with respect to the earth frame, and bω is the angular velocity.

In accordance with the properties of quaternion, the attitude quaternion b
eqω,t+∆t and

its derivative b
eq̇ω,t+∆t at time t + ∆t can be calculated iteratively by Equation (3) and

Equation (4):

b
eqω,t+∆t = b

eq̂ω,t + b
eq̇ω,t+∆t∆t (3)
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b
eq̇ω,t+∆t =

1

2
b
eq̂ω,t ⊗ bωt+∆t (4)

where ∆t is the sampling period. We can update the attitude by the three-axis angular
velocity of the gyroscope, Equation (3) and Equation (4).

2.2. Simplified Gauss-Newton Algorithm. We estimate the orientation using Gauss-
Newton Algorithm by the difference between the converted value and measured value. We
can get the objective function by the nonlinear least mean square error.

f
(

b
eq̂am,t

)

=
1

2
ε
(

b
eq̂am,t

)T
ε
(

b
eq̂am,t

)

(5)

where b
eq̂am,t is quaternion calculated with Gauss-Newton iterative algorithm, and

ε
(

b
eq̂am,t

)

is the error function.

The gravity vector and the geomagnetic reference vector are eẑa,t =
[

0 0 0 1
]

and eẑm,t =
[

0 m̂x m̂y m̂z

]

, respectively. According to the characteristics of the
quaternion, we can get Equation (6) and Equation (7):

b
eQ̂a,t = b

eq̂am,t ⊗ eẑa,t ⊗ b
eq̂

∗

am,t (6)

b
eQ̂m,t = b

eq̂am,t ⊗ eẑm,t ⊗ b
eq̂

∗

am,t (7)

bât and bm̂t stand for the normalized vector of the triaxial data of accelerometer and
magnetometer, respectively. We get the error function by the weight of the accelerometer
ρa and the weight of the magnetometer ρm:

ε
(

b
eq̂am,t

)

=

[

ρaεa

(

b
eq̂am,t

)

ρmεm

(

b
eq̂am,t

)

]

=





ρa

(

b
eQ̂a,t − bât

)

ρm

(

b
eQ̂m,t − bm̂t

)



 (8)

where ba and bm are the external acceleration and magnetic field.
We can get the result of equation according to the definition of matrix two-norm when

∥

∥ε
(

b
eq̂am,t

)
∥

∥ = 0. Iterative formula can be calculated by using Gauss-Newton iterative
algorithm, which is expressed as:

b
eq̂(k + 1) = b

eq̂(k) −
(

J(k)T J(k)
)−1

J(k)T ε
(

b
eq̂(k)

)

(k = 0, 1, 2, . . . , n) (9)

J(k) is the Jacobian determinant of error equation in the current moment:

J
(

b
eq̂(k)

)

=
∂ε
(

b
eq̂(k)

)

∂b
eq̂(k)

=













ρa

∂ε1

∂q̂0
...

ρm

∂ε6

∂q̂0

ρa

∂ε1

∂q̂x
...

ρm

∂ε6

∂q̂x

ρa

∂ε1

∂q̂y
...

ρm

∂ε6

∂q̂y

ρa

∂ε1

∂q̂z
...

ρm

∂ε6
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











(10)

Equation (11) describes the traditional Gauss-Newton Algorithm to estimate attitude
using the initial value.

b
eq̂(n + 1) = b

eq̂(0) −
n
∑

k=0

(

J(k)TJ(k)
)−1

J(k)T ε
(

b
eq̂(k)

)

= b
eq̂(0) − µk

(

J(0)TJ(0)
)−1

J(0)Tε
(

b
eq̂(0)

)

(11)

where b
eq̂(n+1) is the rotation quaternion calculated with the Gauss-Newton Algorithm at

t + ∆t, recorded as b
eq̂am,t+∆t.

b
eq̂(0) is the initial attitude calculated with complementary

filtering algorithm at t, recorded as b
eq̂f,t. µt is the step-size, which can be calculated with

Hessen matrix of objective function. Ignoring the two-order information item of Hessen
matrix, we get the faster convergence speed based on approximate term H ≈ 2JTJ and

gradient G ≈ 2JT ε, recorded as ∇ = −
(

JTJ
)−1

JTε.
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The iteration times of Gauss-Newton Algorithm are constrained by the convergence
rate. The convergence speed is no less than the carrier, while constrained by the step-
size. The iterative time can be shortened by giving the step-size µt an appropriate value.
Thus, Equation (11) can be simplified as follows:

b
eq̂am,t+∆t = b

eq̂f,t − µt+∆t

(

J
(

b
eq̂f,t

)T
J
(

b
eq̂f,t

)

)−1

J
(

b
eq̂f,t

)T
ε
(

b
eq̂f,t

)

= b
eq̂f,t − µt+∆t

∇b
eq̂f,t

‖∇b
eq̂f,t‖

(12)

The optimal value of the step-size µt+∆t can be calculated as Equation (13) [11].

µt+∆t = α
∥

∥

b
eq̇ω,t+∆t

∥

∥∆t (13)

The attitude quaternion b
eq̂am,t+∆t can be calculated iteratively by Equation (12). With

the improvement of our work, only one iteration is required for each solution, which greatly
reduces the computational complexity.

3. Adaptive Hybrid Filtering Algorithm. Two different solutions of attitude angles
are discussed separately in Section 2. However, the accuracy of the solution will be
decreased for the drifts of gyroscope measuring data, affected by low frequency noise.
Besides, it is difficult to converge to the optimal value using SGNA under high frequency
noise and the linear acceleration interference.

3.1. Estimation of orientation based on adaptive hybrid algorithm. The comple-
mentary filter can be used to process the two noise sources. The high-pass filter processes
the gyroscope data, and the low-pass filter deals with the data of the other two sensors.
The final optimal attitude angle is fused by b

eq̂ω,t, integrated over gyroscope data and
b
eq̂am,t, solved by SGNA. In this paper, the adaptive complementary filter combines the
advantages of both the complementary filter and SGNA. The proposed method adjusts
the factors in real-time system to improve the accuracy.

The fusion formula for the basic complementary filtering algorithm is calculated from
Equation (14):

b
eq̂f,t = kt

b
eq̂a,t + (1 − kt)

b
eq̂ω,t, 0 ≤ kt ≤ 1 (14)

where kt and 1−kt are the weights of the two kinds of attitude solving schemes. The value
of kt, which guarantees the covergence rate of b

eq̂am,t, is restricted to the physical orienta-
tion rate measured from gyroscope b

eq̂ω,t. Therefore, the value of kt can be calculated as
(15).

kt

µt

∆t
= λ (1 − kt) , namely, kt =

λ

µt/∆t + λ
(15)

where λ is the variable parameter after simplifying. Substituting Equation (13) and
Equation (15) into Equation (14) obtains Equation (16).

b
eq̂f,t =

λ

α ‖b
eq̇ω,t+∆t‖ + λ

b
eq̂am,t +

(

α
∥

∥

b
eq̇ω,t+∆t

∥

∥

α ‖b
eq̇ω,t+∆t‖ + λ

)

b
eq̂ω,t (16)

Equation (16) contains two parameters α and λ. Considering that the convergence rate
of b

eq̂am,t cannot be less than the actual velocity of the movement of the carrier, Equation
(12) and Equation (15) can be written as follows.

b
eq̇am,t+∆t= − µt+∆t

∇b
eq̂f,t

‖∇b
eq̂f,t‖

(17)

kt =
λ

µt/∆t
=

λ∆t

µt

(18)
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Since µt is large, we can get that kt ≈ 0. Substituting Equation (3), Equation (17) and
Equation (18) into Equation (14) obtains Equation (19).

b
eq̂f,t+∆t = b

eq̂f,t + b
eq̇f,t+∆t∆t (19)

where

b
eq̇f,t+∆t = b

eq̇ω,t+∆t − λb
eq̇∇,t+∆t = b

eq̇ω,t+∆t − λ
∇b

eq̂f,t

‖∇b
eq̂f,t‖

(20)

λ is the only one parameter of the simplified complementary filter fusion algorithm.
The optimized λ is as follows:

λ = 2 − (ea,t + em,t) ∗ 0.9 − (|eax| + |eay| + |eaz| + |emx| + |emy| + |emz|) ∗ 10 ∗ 0.1 (21)

where ea,t and em,t are the previous error vectors of accelerometer and magnetometer,
respectively. The calculation method of the errors is as follows:

ea =
[

ea0 eax eay eaz

]T
= eẑa,t ⊗ bâ (22)

em =
[

em0 emx emy emz

]T
= bm̂⊗ eẑm,t (23)

The optimized formula reduces the changing rate of adaptive filtering parameters and
improves continuity and stability of the system, which incorporates low-pass filter.

3.2. Gyroscope drift compensation. In order to reduce the effect of gyroscope drift
on the measurement accuracy, the convergence direction of the SGNA algorithm is used
as the observation vector to compensate the gyroscope drift error. The angular velocity
after compensation is as follows:

bωc,t+∆t = bωt+∆t − bωerror,t+∆t (24)

where
bωerror,t+∆t = 2b

eq̂
∗

f,t+∆t ⊗ b
eq̇∇,t+∆t (25)

The schematic diagram of the improved adaptive complementary filtering algorithm is
shown in Figure 2.

Figure 2. Schematic diagram of AHF

4. Experimental Validation and Results. Figure 3 shows the inertial/magnetic sen-
sor, including a gyroscope and an accelerometer, integrated in a chip named MPU6050
and a tri-axis magnetometer (HMC5883). The small chip is based on the Wireless blue-
tooth communication, and the sampling frequency of 100Hz is supposed to work well for
HMCS.
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Figure 3. Inertial/magnetic sensor Figure 4. Source of distur-
bance in magnetic

Figure 5. Modulus of the three axis magnetometer

Figure 6. Static orientation estimation with magnetic disturbances using
the proposed AHF compared with the HF, EKF, and GDA

4.1. No movement with magnetic disturbances. In this test scenario, the sensor
arrays kept still and a magnetic was swayed around the sensor intermittently (see Figure
4). Magnetic field intensity was clearly shown in Figure 5, and the magnetic disturbances
were marked in the red flags.

Figure 6 shows the Euler angles which were calculated from the HF, EKF, Gradient De-
scent Algorithm (GDA), and the proposed algorithm AHF. Obviously, the heading angles
were evidently affected by the magnetic disturbances using the HF, and GDA, while there
was no obvious influence based on the EKF and AHF. Besides, for the static accuracy,
the convergence velocity of GDA is slower than all other three methods. Moreover, the
proposed AHF has lower error average in static without magnetic disturbances, whose
mean error is 0.5 degree.

The magnetic data are mainly involved in the calculation of the heading angle, so the
effect of the magnetic disturbance on the attitude calculation has been researched. The
calculation error of head angle of each algorithm is shown in Figure 7. The calculation
shows that the errors of HF and GDA are 3.53◦ and 7.81◦ caused by magnetic distur-
bance. The values are clearly higher than the errors of EKF and AHF, which are 1.07◦
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Figure 7. Errors of yaw with magnetic disturbances using the proposed
AHF compared with the HF, EKF, and GDA

Figure 8. Measured data of the three axis accelerometer

Figure 9. Orientation estimation with sudden fast movement using the
proposed AHF compared with the HF, EKF, and GDA

and 0.94◦. EKF and the proposed algorithm can effectively reduce the impact of mag-
netic interference on the course, which can meet the accuracy of angle with magnetic
disturbance.

4.2. Sudden fast movement. This test was performed in a magnetically homogeneous
environment and the sensor went through a sudden acceleration change. The sudden
acceleration disturbances for three axes were clearly shown in Figure 8.

As shown in Figure 9, the proposed algorithm shows better performance than others in
sudden acceleration change. The maximal errors of pitch angle and roll angle calculated
by the proposed AHF were 0.82◦ and 0.92◦ respectively, since the others were 22.95◦ and
15.63◦, 4.94◦ and 2.26◦, 9.92◦ and 10.21◦, separately calculated by HF, EKF and GDA.
Thus, the proposed AHF offered reasonably accurate estimation performance even in this
situation.
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Table 1 shows the analysis results under static and dynamic environment from four
methods. As shown in Figures 5-9 and Table 1, the error of attitude angle of the proposed
was lower than 0.5◦ under the static state without magnetic interference, eliminating the
drift effectively. It is obvious that there was no definite affect for head angle based on
the proposed AHF, whose mean error was lower than 0.94◦. Besides, the mean error was
limited in 1◦ under the living environment from the proposed, which ensures the accuracy
for Human-Motion-Capture System.

Table 1. Sample data

Methods Errors (◦)
Static/Nonmagnetic Static/Magnetic Dynamic
Roll Pitch Head Roll Pitch Head Roll Pitch Head

HF
max 1.23 1.96 3.13 1.48 3.12 5.61 15.63 22.95 19.05
mean 0.75 0.89 1.43 1.52 1.47 3.53 13.91 18.87 15.11

EKF
max 0.56 0.42 0.84 0.63 0.45 1.51 2.26 4.94 2.15
mean 0.20 0.25 0.56 0.31 0.27 1.07 1.86 3.54 0.91

GDA
max 7.72 7.91 8.68 8.15 7.48 10.22 10.21 9.92 15.92
mean 4.52 5.50 6.11 6.43 6.76 7.81 7.78 8.57 10.43

AHF
max 0.41 0.52 0.91 0.58 0.62 1.04 0.92 0.82 0.98
mean 0.23 0.26 0.48 0.27 0.29 0.94 0.65 0.69 0.85

The time of once iteration of four methods is recorded in Table 2, where the one iteration
time of the proposed was 4.7ms, which could increase by 25%, and 55% compared with
EKF and GDA. The proposed reduces the iteration time obviously.

Table 2. Time of one iteration of each algorithm

HF EKF GDA AHF
Running time (ms) 3.2 6.3 10.4 4.7

As shown in Table 3, due to its high computational efficiency and accuracy, the proposed
AHF can be potentially implemented in a network of miniature MARG sensors for Human-
Motion-Capture System.

Table 3. Comprehensive performance contrast of each algorithm

AHF HF EKF GDA
Gyro drift compensation

√ √ √ ×
Magnetic disturbances

√ × √ ×
Sudden fast movement

√ × × √

Real-time
√ √ × ×

4.3. Realization of upper brachial. The Human-Motion-Capture System controls the
human skeleton model, and reproduces human posture according to the features of human
articular movement, which collects articular movement data on the basis of rigid body
dynamics through a sensor network. Based on the above analyses, we designed a skeletal
motion model consistent with human motion by loading a human skeleton file based on
Microsoft Visual Studio 2010 platform and OpenGL development library environment, to
achieve the capture of human brachial.

With the brachial motion process taken as an example, two sensors were mounted over
the upper brachial and the lower brachial individually (see Figure 10). The wearer swung
the brachial, and the system can accurately track the motion trajectories of the brachial
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Figure 10. The sensors bind-
ing mode

Figure 11. The human mo-
tion capture

(see Figure 11). With a variety of tests, the proposed AHF can accurately track the
motion of the human body through the dynamic tracking of actual human bodies.

5. Conclusions. This paper presented an AHF with adaptive parameters designed for
HMCS in free-living environments. This paper focused on adjusting the parameters of the
complementary filter in real time to improve accuracy and adaptability. The proposed
algorithm was evaluated under various conditions, and the results demonstrated that the
mean error is 0.94◦ in magnetic interference state and the mean error is lower than 1◦

in dynamic environment. Since the proposed method needs less computation time, it is
practical for HMCS.

Research is presently under-way to incorporate the AHF into the independent HMCS.
Real-time performance, wireless transmission, data reliability, low power consumption,
and a novel method for parametrized mannequin modelling are the major challenges in
future work.
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