
ICIC Express Letters
Part B: Applications ICIC International c⃝2017 ISSN 2185-2766
Volume 8, Number 6, June 2017 pp. 937–943

TO ACHIEVE OPTIMAL TRUSTWORTHY AGREEMENT
IN THE UNRELIABLE MOBILE CLOUD

COMPUTING ENVIRONMENT

Shu-Ching Wang, Shih-Chi Tseng and Kuo-Qin Yan∗

Chaoyang University of Technology
No. 168, Jifeng East Road, Wufeng District, Taichung 41349, Taiwan

{ scwang; s10314903 }@cyut.edu.tw; ∗Corresponding author: kqyan@cyut.edu.tw

Received December 2016; accepted March 2017

Abstract. Network bandwidth and hardware technology are developing rapidly, result-
ing in the vigorous development of the Internet. Nowadays, Mobile Cloud Computing
(MCC) is widely accepted as a concept that can significantly improve the user experience
when accessing mobile services. MCC increases the number of user applications on the
Internet. Research must be focused on how distributed systems can provide better reli-
ability and fluency. The agreement problem is fundamental to fault-tolerant distributed
systems. Reach agreement on a same value in a distributed system, even if certain com-
ponents in distributed system were failed; the protocols are required so that systems still
can be executed fault-freely. In this study, the Trusted Timely Computing Base (TTCB)
is used when the message is transmitted. The Trustworthy Agreement Protocol (TAP)
for MCC that we proposed can solve the agreement problem with a minimal number of
rounds of message exchanges and tolerates a maximal number of allowable malicious and
dormant faulty transmission media in the Cluster-based MCC (CMCC). The TAP at-
tempts to solve the agreement problem and makes all faulty-free nodes in the topology of
MCC achieve stable results without any influence from faulty components.
Keywords: Distributed agreement problem, Mobile cloud computing, Fault tolerant,
Trusted timely computing base

1. Introduction. MCC at its simplest refers to an infrastructure where both the data
storage and the data processing happen outside of the mobile device [4]. As MCC has
become increasingly popular, network topology has trended toward wireless connectivity,
thus providing enhanced support for MCC [6]. This technological trend has greatly en-
couraged distributed system design and support for cloud nodes [2]. The “cluster” has
attracted significant attention recently because it requires less infrastructure, it can be
deployed quickly, and it can automatically adapt to changes in topology. Therefore, the
structure of a cluster can suit military communication, emergency disaster rescue opera-
tions, and law enforcement [2], and be used to the cloud-computing technology of MCC
[2].

In order to enhance the capability of fault tolerance and ensure network security, it is
necessary to provide a stable mobile cloud service environment. However, the reliability
of cloud nodes is one of the most important aspects in MCC [5]. In order to provide a
reliable CMCC, a mechanism to allow a set of cloud nodes to agree on an agreement value
is required.

The Byzantine Agreement (BA) problem introduced by Lamport et al. [3] is one of the
fundamental problems in distributed computing. The definition of the problem is to make
the fault-free nodes in an n-node distributed system reach agreement. The source node
chooses an initial value to start with, and communicates to each other by exchanging
messages. A group of nodes is referred to make an agreement if it satisfies the following
conditions [3].

937



938 S.-C. WANG, S.-C. TSENG AND K.-Q. YAN

(Agreement): All fault-free nodes agree on a common value.
(Validity): If the initial value of fault-free source node ns is vs, then all fault-free nodes

shall agree on the value vs.
In an agreement problem, many cases are based on the assumption of node failure in

a fail-safe network [3]. Based on this assumption, a Transmission Medium (TM) fault is
treated as a node fault, whatever the fault-freeness of an innocent node is, so an innocent
node does not involve agreement [9].

Actually, the symptom of a faulty TM can be classified into two types: dormant (such
as crash, stuck-at, or delay) and malicious. A dormant faulty TM always can be identified
by the receiver if the transmitted message was encoded appropriately (i.e., by NRZ-code,
Manchester code [7]) before transmission. On the other hand, the malicious faulty TMs
are unpredictable. In this study, the agreement problem is revisited to enlarge the fault
tolerant capability by allowing both dormant and malicious faulty TMs to exist in the
system simultaneously.

Therefore, in this study, the agreement problem is revisited with the assumption of TM
failure on dormant and malicious faults in the CMCC while message transmissions may
be disturbed by some faults, break down, stuck-at, noise or an intruder. The proposed
protocol TAP, can tolerate d dormant faulty TMs and m malicious faulty TMs simultane-
ously existing in the CMCC to reach agreement. In addition, the protocol requires only
two rounds of message exchange.

The rest of this paper is organized as follows. The related work is shown in Section
2. The proposed protocol TAP will be illustrated in Section 3. In Section 4, an example
of executing the proposed protocol is given. Section 5 is responsible for proving the
fault-freeness and complexity of TAP. Finally, Section 6 gives conclusions of this research.

2. Related Work. The design and development of the trustworthy agreement protocol
have several requirements that must be considered. Therefore, the structure of CMCC
and the security technology will be discussed in this section.

The MCC would also be based on the basic cloud computing concepts. MCC combining
the mobile devices and cloud computing to create a new infrastructure, MCC can per-
form the heavy lifting of computing-intensive tasks and storing massive amounts of data
[2]. Currently, the cluster cloud is a more practical kind of cloud computing. A cluster
of multiple cloud nodes in a cluster cooperates to achieve some objectives [2]. CMCC
consists of a set of loosely or tightly connected cloud nodes that work together so that,
in many respects, they can be viewed as a single system. The components of a cloud
cluster are usually connected to each other through fast LANs with each cloud node. All
cloud nodes of CMCC are usually deployed to offer improved performance and availability
compared to a single computer, while typically are much more cost-effective than single
computers of comparable speed or availability. However, in CMCC, from the aspects of
mobile computing and cloud computing, mobile cloud computing is a combination of both
technologies, the development of distributed, grid and centralized algorithms, as well as
prospects for broad application [5]. The CMCC is shown in Figure 1.

In a CMCC, the nodes are interconnected. Reach agreement on a same value in a
distributed system, even if certain TMs in distributed system were failed (inner damage
or outer intruder); hence, the protocols are required so that systems still can be executed
fault-freely. In this study the TTCB is used when the message is transmitted [8]. There are
two characteristics of TTCB: security and synchronization. The TTCB system structure
is shown in Figure 2. Payload System is composed of useful software in the Host and
Payload Network offers the ways that contact with each Host [8]. Because the TTCB is
secure, nodes can receive the same result through the TTCB.



ICIC EXPRESS LETTERS, PART B: APPLICATIONS, VOL.8, NO.6, 2017 939

Figure 1. Cluster-based MCC [5]

Figure 2. TTCB system structure [8]

In this study, all nodes of a distributed system can reach agreement even if some TMs
are faulty to interfere from some noise hijacker or arbitrary behavior. Then, the fault-
tolerance capacity of the system is enhanced.

3. The Proposed Protocol. This study proposes a new protocol TAP to solve the
agreement problem of faulty TMs that may send wrong messages to influence the system
to achieve agreement in a CMCC. The proposed protocol TAP consists of two phases,
the message exchange phase and decision making phase. Moreover, TAP only needs two
rounds of message exchanges to solve the agreement problem.

In the first round of the message exchange phase, the source node ns multicasts its
initial value vs through TMs by TTCB. And then, each node stores the received value
in root of message-gathering tree (mg-tree) [9]. The mg-tree is a tree structure which is
used to store the received messages. In the second round, each node ni acts as the sender,
sending the value vs (received from source node ns) to other nodes by TTCB. However,
the receiver can always detect the message(s) through dormant faulty components if the
protocol TAP appropriately encodes a transmitted message by using Manchester code [7].
Hence, if the messages pass through any dormant faulty TMs, then λ will be stored in
mg-tree of receiver. In decision making phase, in order to reduce the influence from the
faulty components, a majority value is taken from all nodes in the same cluster to set the
majority value at level 2. Finally, the agreement among all nodes will be achieved. The
proposed protocol TAP is presented in Figure 3.



940 S.-C. WANG, S.-C. TSENG AND K.-Q. YAN

TAP protocol (for node ns with initial value vs)
Message Exchange Phase

Round 1:

The source node sends its value (vs) to other nodes by TTCB; each receiver
node obtains the value and stores the received value in the root of its mg-
tree. If the cluster-disjoint path from source node to destination cluster
passes through any dormant faulty transmission media, then λ is stored.

Round 2:

Each node transmits the values at the root in its mg-tree to each cluster’s
nodes by TTCB. If the cluster-disjoint path from source node to destination
cluster passes through any dormant faulty transmission media, then λ is
stored. Each receiver node takes a majority on its received messages and
stores the majority value in the corresponding vertices at level 2 of its mg-
tree.

Decision Making Phase
Step 1:
(1) Take the majority value of Vi in mg-tree.
(2) Each λ value is ignored and does not join to the majority.
(3) If the majority value does not exist,

then set the # (it will be ignored and does not join to the majority in Step 2 at
level 2).

else set the majority value {0, 1} at level 2.
Step 2:
(1) Take a majority value of mg-tree, each λ value is ignored and does not join to
the majority.
(2) If the majority value does not exist and vki of Vi is equal to vi in its mg-tree at
level 2,

then set DECi = NOT(vi), // rule 1
else set DECi = vs if the majority value is vs in the mg-tree. // rule 2
Otherwise set DECi = ϕ. // rule 3

Figure 3. The proposed protocol TAP

4. An Example of TAP Executed. An example of executed TAP is shown in Figure
4. Figure 4(a) shows 12 nodes, 4 clusters in a CMCC. Cluster C1 includes the nodes n1,
n2 and n3. Cluster C2 includes the nodes n4, n5 and n6. Cluster C3 includes the nodes n7,
n8 and n9. Cluster C4 includes the nodes n10, n11 and n12. The initial value of the source
node ns (n3) is 1. Figure 4(b) describes the values vs received by each node by TCCB in
the first round of message exchange phase. The received values are changed maliciously
in n4, n5 and n6 due to the fact that the TMs are malicious faults. The received values of
n10 and n12 are interfered within dormant faulty TMs, and λ will be set to n10 and n12.

In the end of message exchange phase, each node sends the value received in the first
round by TTCB to all nodes as shown in Figure 4(c). Since the TMs between C1 and C2

are malicious, the values stored in ni’s mg-tree (1 ≤ i ≤ 6) are changed maliciously. The
TMs between n1 and n10, n3 and n12 are dormant, the values λs are stored in ni’s mg-tree
(i = 1 to 3 and 10 to 12). Similarly, the TMs between n4 and n8, n5 and n7 are dormant,
and the values λs stored in ni’s mg-tree (i = 4 to 9) are also interfered within dormant
faults. The TMs between n7 and n11, n8 and n10 are dormant faults, and the values λs
stored in ni’s mg-tree (i = 7 to 12) are interfered within dormant faults.

The message exchange phase has completed after two rounds by TAP. In order to reduce
the fault-free values of the TMs that were interfered within dormant or malicious faults,
each node takes majority in Step 1 of decision making phase. By the first of Step 1, each
node takes the majority on the values received from a cluster, and stores its majority
values in mg-tree at level 2. Then each node takes the majority value from the mg-tree



ICIC EXPRESS LETTERS, PART B: APPLICATIONS, VOL.8, NO.6, 2017 941

(a) A 4-cluster MCC with dormant and malicious faulty TMs

Level 1 (Root s)
Node n1 1
Node n2 1
Node n3 1
Node n4 0
Node n5 0
Node n6 0
Node n7 1
Node n8 1
Node n9 1
Node n10 λ
Node n11 1
Node n12 λ

(b) The first round of message exchange

(c) The mg-tree of each node in the second round of message exchange

Figure 4. An example of TAP execution



942 S.-C. WANG, S.-C. TSENG AND K.-Q. YAN

at level 2 in the end of Step 2. Let DECi be defined as the value chosen by node ni to be
agreed on with other nodes, each node agrees on a common agreement shown in Figure
4.

5. The Fault-Freeness and Complexity of TAP. To cope with the CMCC on dual
failure modes, the proposed protocol TAP can tolerate d dormant and m malicious faulty
TMs existing simultaneously in an n nodes and C clusters of MCC to agree on a common
agreement. The lemmas and theorems are used to prove the fault-freeness of TAP.

Lemma 5.1. Let the initial value of the sender node ni be vi. By using TAP, the des-
tination cluster’s nodes can receive the value vi from the sender node ni by TTCB if
mxy ≤ ⌈(TMxy − dxy)/2⌉ − 1 and dxy ≤ TMxy − 1, where mxy is the total number of
allowable malicious faulty TMs between Cluster Cx and Cy, dxy is the total number of
allowable dormant faulty TMs between Cluster Cx and Cy, and TMxy is the total number
of TMs between Cluster Cx and Cy.

Proof: By using TAP, the sender node can transmit its value to the destination clus-
ter’s nodes through TMxy cluster-disjoint paths. According to the assumption of mxy ≤
⌈(TMxy−dxy)/2⌉−1 and dxy ≤ TMxy−1, the nodes in the destination cluster, in the worst
case, can get TMxy − dxy values from the sender node. Since mxy ≤ ⌈(TMxy − dxy)/2⌉− 1
and dxy ≤ TMxy − 1, the majority can be taken on these TMxy − dxy values and let each
of the nodes in the destination cluster get the value vs.

Lemma 5.2. The decision value DECi = majority value.

Proof: Lemma 5.2 is proven by the definition of the agreement problem.

Theorem 5.1. Protocol TAP is valid.

Proof: According to Lemmas 5.1 and 5.2, the validity of TAP is confirmed.

Theorem 5.2. Protocol TAP can make each fault-free node agree on a common agree-
ment.

Proof: If a node agrees on value Z (where Z = vi = vs, and 1 ≤ i ≤ n by Lemma 5.2),
all nodes should agree on value Z.

Theorem 5.3. The amount of information exchange by TAP is O(n).

Proof: In the first round, every node receives one initial value from the source node.
In the end of message exchange phase, n values are received from the other (n− 1) nodes
in the network; hence, the total number of message exchange is 1 + (n − 1) = n. The
result implies that the complexity of information exchange is O(n).

Theorem 5.4. One round of message exchange cannot solve the agreement problem.

Proof: [Part A]. Message exchange is necessary. A node cannot derive whether or
not a disagreeable value exists in other nodes without message exchanging. Therefore,
agreement problem cannot be implemented.

[Part B]. One round of message exchange is not enough to solve agreement problem.
If node ni of Cluster Cx is connected with node nm of Cluster Cy by faulty TM, node ni

may not know the initial value in node nm by using only one round of message exchange.
Hence, it is possible to reach an agreement by using one round of message exchange.

Theorem 5.5. If the total number of faulty TMs is f and f > ⌈c/2⌉ − 1, where mxy ≤
⌈(TMxy − dxy)/2⌉ − 1, it is also impossible to reach an agreement.

Proof: When f > ⌈c/2⌉ − 1, then each cluster has at least one TM connecting with
other cluster. It is possible that there are more malicious faulty TMs than fault-free TMs



ICIC EXPRESS LETTERS, PART B: APPLICATIONS, VOL.8, NO.6, 2017 943

between Cluster Cx and Cy. Whatever the number of rounds of message exchange, these
nodes between Cluster Cx and Cy will always be confused by the messages transferred
through those malicious faulty TMs. Similarly, all of TMs between Cluster Cx and Cy

might be dormant fault if possible, then regardless of the number of rounds of message
exchange, these nodes between cluster Cx and Cy will not receive any non-λ’s. However,
the decision making by these nodes may conflict with other nodes, agreement problem is
solved impossibly, and Theorem 5.5 is proven.

Theorem 5.6. TAP can tolerate the maximum number of faulty TMs in a CMCC.

Proof: The theorem has been proven by Theorems 5.2, 5.3, 5.4 and 5.5.

6. Conclusions. The agreement problem is a fundamental problem in the distributed
environment [3]. The problem has been studied by various kinds of network model in the
past [9]. According to previous studies, the network topology plays an important role in
this problem [9]. Therefore, in this study, the agreement problem in CMCC is revisited.
The trustworthy agreement problem is redefined by TAP protocol within TTCB in a
CMCC and can achieve a common value with two rounds of message exchanges.

That is, the TAP has the following features.

• The TAP can solve the agreement problem in a CMCC.
• The TAP allows the design of reliable communication using the Trusted Timely

Computing Base (TTCB).
• The TAP can solve the agreement problem by the minimum number of rounds of

message exchanges.
• The TAP increases the fault tolerance capability by allowing for malicious faulty

TMs.

Merely considering component faults in the agreement problem is insufficient for the
highly reliable distributed system of a CMCC. A related closely problem is called the Fault
Diagnosis Agreement (FDA) problem [1]. The objective of solving the FDA problem is
to make each fault-free node can detect or locate the common set of faulty components
in the distributed system. Therefore, solving the FDA problem for the highly reliable
distributed system underlying topology of CMCC is included in our future work.

REFERENCES

[1] M. L. Chiang, S. C. Wang and L. Y. Tseng, An early fault diagnosis agreement under hybrid fault
mode, Expert Systems with Applications, vol.36, no.3, pp.5039-5050, 2009.

[2] A. Khan, M. Othman, S. Madani and S. Khan, A survey of mobile cloud computing application
models, IEEE Communications Surveys & Tutorials, vol.16, no.1, pp.393-413, 2014.

[3] L. Lamport, R. Shostak and M. Pease, The Byzantine general problem, ACM Trans. Programming
Languages and Systems, vol.4, no.3, pp.382-401, 1982.

[4] V. Lawson, V. Kumar and L. Ramaswamy, Mobile cloud enabled sensor services: Opportunities,
challenges and approaches, Proc. of IEEE International Conference on Mobile Services, pp.292-297,
2015.

[5] G. Mukesh and S. Sukhwinder, Mobile cloud computing, International Journal of Enhanced Research
in Science Technology & Engineering, vol.3, no.4, pp.517-521, 2014.

[6] F. Niroshinie, W. L. Seng and R. Wenny, Mobile cloud computing: A survy, Future Generation
Computer Systems, vol.29, no.1, pp.84-106, 2013.

[7] C. A. Sunshine, Computer Network Architectures and Protocols, Springer Science & Business Media,
2013.

[8] P. Veŕıssimo and A. Casimiro, The timely computing base model and architecture, IEEE Trans.
Computers, vol.51, no.8, pp.916-930, 2002.

[9] S. C. Wang, K. Q. Yan, C. L. Ho and S. S. Wang, The optimal generalized Byzantine agreement in
cluster-based wireless sensor networks, Computer Standards & Interfaces, vol.36, no.5, pp.821-830,
2014.


