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Abstract. Destination prediction has been widely concerned in recent years, and it
is also important for other technologies such as targeted advertising and recommending
sightseeing places. However, destination prediction for indoor moving object is still a big
challenge because indoor space structure and data sparsity make it more complex than
outdoor destination prediction. Therefore, we address a new scheme for indoor destina-
tion prediction based on bidirectional recurrent neural networks. In our approach, the
history trajectory dataset obtained by indoor positioning technology is used to preprocess
indoor space and calibrate sampling points, and an improved bidirectional recurrent neu-
ral networks is used to predict destination by calibrated sampling points. Experiments
based on real datasets show that the proposed method can predict destinations more fa-
vorably than others.
Keywords: Wi-Fi positioning technology, Indoor moving object, Destination prediction

1. Introduction. With the development of positioning technologies, there is more and
more location information being recorded. It makes it possible to predict moving object
destination. However, its current mainstream application is outdoor trajectory based on
GPS positioning technology, which is not capable of continuously reporting the indoor
location [1-3]. For indoor destination prediction, there are a lot of differences from that of
outdoor. Indoor space is constructed by cellular space, and it contains different entities
such as rooms, doors and hallways which influence the connection of indoor space [4].
Sometimes cells are connected in space, but actually they are not connected due to the
walls. Therefore, it is not possible to predict destination according to distance.

Nowadays, with the development of wireless networks, much work [5-7] has been pro-
posed for recording much more indoor positioning information, which has significantly
improved the effectiveness and universality of indoor positioning system, which is nec-
essary for moving object destination prediction. There are some methods that can be
applied to predicting indoor destination. A method to predict trajectory using Markov
models is proposed in [8]. In [9], a new scheme is proposed to predict destination using a
Bayesian inference. A new method is proposed which establishes a theoretical model to
destination prediction with a transition tensor in [10]. However, after testing the above
destination prediction methods, we found that they failed to consider the data sparsity or
temporal information. The data sparsity and temporal information influence the proba-
bility of different destinations. These weaknesses finally caused great deviation from real
destination.

To address these issues, a scheme for indoor destination prediction based on bidirec-
tional recurrent neural networks (BRNN) is proposed. The historical trajectory dataset
is used to preprocess indoor space. Then we calibrate the input sampling trajectories
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to solve data sparsity. Finally, we apply the calibrated sampling points into BRNN to
predicting destination.
The rest of this paper is organized as follows. In Section 2, we introduce the method

of indoor space preprocessing. In Section 3, the input sampling points are calibrated. In
Section 4, we apply the calibrated sampling points into improved BRNN to predicting
destination. The experimental results are shown in Section 5. Finally, Section 6 draws a
conclusion.

2. Preprocessing Indoor Space. To solve the problem of indoor space connectivity,
we propose an approach to preprocessing indoor space. First, we divide the indoor space
into some same size of cells and assign the cells ID (CID) represented by (x, y), and a
trajectory can be shown by a sequence of CID. The connectivity is decided by historical
trajectory dataset.
However, in historical trajectory dataset, there are always some sampling errors. To

deal with this error, we set a point threshold. If the number of historical points in a cell
is over threshold, the points are available, else are useless.

Definition 2.1. (Spatial neighbor) If the CID of two cells satisfy the condition of
|x− x′| ≤ 1, |y− y′| < 1 or |x− x′| < 1, |y− y′| ≤ 1, the cells are spatial neighbors (SN).

Definition 2.2. (Spatial connection) If the cells are spatial neighbors and there exists
a trajectory connecting the two cells directly, then we consider the two cells to be spatial
connection (SC).

Definition 2.3. (Connection region) There is a special region which connects different
regions; in other words, if a cell is marked with different region IDs (RIDs), then we
consider it to be a connection region (CR) such as the door.

The main idea of preprocessing indoor space is to assign the cells which are SC to the
same RID and assign different RIDs if they are SN but not SC; if a cell is assigned two
different RIDs, then it should be marked CR.

Algorithm 1: Preprocess Indoor Space

Input : Historical trajectory dataset, a cellular space;
Output: A regional indoor space

1 qi ← the queue of a cell’s spatial neighbor cells // i represents the region id
2 while qi is not empty do
3 remove the cell (x, y) from qi;
4 if the cell has not been marked connection region then
5 for each cell ∈ spatial neighbor of the cell (x, y) and is not marked RID(ri) do
6 if cell (x′, y′) is spatial connection with (x, y) then
7 put the cell into qi;
8 if (x′, y′) already has an RID then
9 (x′, y′) will be marked CR(cri,k); // i, k are RID

10 else
11 marked ri;
12 else
13 Weaken treatment(qi);
14 qi+1 ← (x′, y′);
15 i++;
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Algorithm 2: Weaken Treatment(qi)

1 while qi is not empty do
2 remove the cell (x, y) from qi;
3 for each cell is spatial neighbor of cell (x, y)
4 if the cell is spatial connection and not marked different RID then
5 the cell is marked ri;

3. Sampling Points Calibration. Considering the accuracy of indoor positioning tech-
nology, data sparsity and temporal information using an approach to calibrating sampling
points is proposed, which is based on the historical trajectory dataset. First, we calculate
the transition probability with time stamp. And then insert some cells into sampling
points.

3.1. Transition probability. Transition probability is the probability of objects moving
from one cell or region to others. If the cells are in the same region, we can directly
calculate the transition probability; else we should calculate region transition probability.

For the cells in the same region, one cell just connects to its SC cells directly; therefore,
we just need to calculate the probability with the SC cells. The probability is saved in a
matrix M , |T (cx,y → ∗)| is the number of the trajectories which travel from cell (x, y) to
its connecting cells, and cx,y is the CID of (x, y), (x′, y′) is one of the cells connecting to
(x, y).

P1

(
c(x,y) → c(x′,y′)

)
=

∣∣T (
c(x,y) → c(x′,y′)

)∣∣∣∣T (c(x,y) → ∗)∣∣ (1)

At the same time, it is easy to get the 2-step probability is M1:2 = M +M2 which is
the probability of transition from (x, y) to another cell within two steps. Analogously, we
can deduce the n-step probability as

M1:n = M +M2 + · · ·+Mn (2)

where m
(
c(x,y), c(x′,y′)

)
is the entry of M1:n representing n-step cells transition probability.

For the region transition probability, which is similar with the cell transition probability,
we regard a region as a cell, and then calculate n-step region transition probability.

3.2. Processing sampling points. The main idea of sampling points calibration is that
if one cell travels more related trajectories and the path traveling time from c(x,y) to c(x′,y′)

is similar with the real time, it is more possible to be inserted into sampling points. In
this paper, we use the average time to express the traveling time from c(x,y) to c(x′,y′) in
historical trajectory dataset.

t
(
c(x,y) → c(x′,y′)

)
=

∑
P∈Pc(x,y)→c(x′,y′)

c(x′,y′).t− c(x,y).t∣∣∣Pc(x,y)→c(x′,y′)

∣∣∣ (3)

where c(x,y).t is the time stamp on the path P which travels from c(x,y) to c(x′,y′), and∣∣∣Pc(x,y)→c(x′,y′)

∣∣∣ is the sum of paths traveling from c(x,y) to c(x′,y′). Then a matrix T indicates

the average time cost.
The n-step path set from si to si+1 is P̄ (si → si+1) = P̄ (si →) ∩ P̄ (→ si+1) in which

P̄ (si →) shows all n-step paths from si to other cells and analogously P̄ (→ si+1) shows
all n-step paths from other cells to si+1.

The path probability Pri(P |S) of sampling points is computed with time similarity.

Pri(P |S) = C • PrPi •St
i (P |S) (4)
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where C is a normalization parameter which satisfies
∑

P∈Ps(si,si+1)
Pri(P |S) = 1, and

PrPi is the frequency of P to be the real path between si and si+1

PrPi = Pri(c
∗
1, c

∗
2, . . . , c

∗
k|s1, s2, s3, . . . , si, si+1, . . . , sn−1, sn)

= Pri(c
∗
1, c

∗
2, . . . , c

∗
k|si, si+1) =

m(si, c
∗
1)m(c∗1, c

∗
2) · · ·m(c∗k, si+1)

m(si, si+1)

(5)

St
i (P |S) describes the similarity between the real time cost and the time cost of P

St
i (P |S) = exp (−(real time cost− time cost of P )2)

= exp (−((si+1.t− si.t)− [t(si → c∗1) + t(c∗1 → c∗2) + · · ·+ t(c∗k → si+1)])
2)
(6)

Algorithm 3: Calibrating sampling points

Input : n-step transition probability matrix, transition probability, threshold ηconfi,
moving object sampling points S(s1, s2, s3, . . . , si, si+1, . . . , sn−1, sn) with
the time stamp, average time matrix T .

Output: calibrated sampling points
1 for each si ∈ S do
2 Generate path set from si to si+1;
3 Ps (si, si+1) ∈ all the paths in the n-step path set
4 for each P ∈ Ps(si, si+1) do
5 Pri(P |S);
6 Initialize a list ℓ to record the insert cells
7 for each c∗ ∈ Ps(si, si+1) do
8 Pr (c∗|S)← 0;
9 for each P ∈ Ps(si, si+1) do

10 if c∗ ∈ P then
11 Pr(c∗|S)+ = Pri(P |S);
12 if Pr(c∗|S) > ηconfi then
13 Add c∗ to ℓ;

14 Insert the cells in ℓ into the sampling pair (si, si+1);

15 return the calibrated trajectory S̄;

4. Indoor Moving Object Destination Prediction. To fully use calibrated sampling
points, we predict indoor moving object destination with bidirectional recurrent neural
networks (BRNN).

4.1. Bidirectional recurrent neural networks. Recurrent neural networks (RNN)
provides a very elegant way of dealing with (time) sequential data that embodies corre-
lations between data points that are close in the sequence. However, with the increasing
of information, the modeling power of the RNN is increasingly concentrated on remem-
bering the input information, leaving less modeling power for combining the prediction
knowledge from different input vectors. To overcome the limitation of a regular RNN,
bidirectional recurrent neural networks is proposed. The idea of BRNN is to split the s-
tate neurons of a regular RNN in a part that is responsible for the positive time direction
(forward states) and a part for the negative time direction (backward states). Outputs
from forward states are not connected to inputs of backward states, and vice versa [11].
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4.2. Predicting moving object destination. Compared with recurrent neural net-
works and multi-layer perception, BRNN makes full use of the beginning and ending
information, which is important for destination prediction.

According to the characteristic of indoor destination prediction, we propose an improved
BRNN structure by deleting its right and left hidden layer and employ the resilient back-
propagation algorithm to train the network. Then the calibrated sampling points which
include location and time information are used as input of improved BRNN. Before pre-
dicting destination, a destination set (ci)1≤i≤C needs to be calculated with a mean-shift
clustering algorithm on the destinations of all the historical trajectories. Then we use a
hidden layer that associates a scalar value (pi)i that is similar to a probability to each
of these clusters and the sum of (pi)i must be 1, and we compute them using a softmax
layer:

pi =
exp(ei)

C∑
j=1

exp(ej)

(7)

where (ej)j are the activations of the previous layer.
At last, for our destination prediction, we calculate a weighted average of the destination

cluster centers:

ŷ =
C∑
i=1

pici (8)

5. Experimental Results. In this section, some relevant experiments are performed to
evaluate the indoor destination prediction ability of our method with respect to the other
approaches [9,10]. We use a real-world large scale pedestrian indoor trajectory dataset
in a market from January 1st, 2014 to May 30th, 2014. It contains 50000 trajectories in
cellular indoor smart environment such as the environment in Figure 1. We randomly
select 1,000 trajectories forming a dataset to be the query trajectories and the remaining
trajectories are used as training data. All following experiments are implemented in
python and run on a computer with Intel Core 4 CPU (3.20 GHz) and 16 GB memory.

In our experiments, in order to qualitatively evaluate the performance of the proposed
method, prediction error is proposed to quantify the accuracy of the predicted results.
We use several commonly-used evaluation approaches in destination prediction, including
cell precision and path completed percentage.

Figure 1. Cellular indoor smart environment
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Figure 2. Precision error w.r.t cell precision comparing the proposed and SubSyn

Figure 3. Precision error w.r.t path completed percentage comparing pro-
posed, T-DesP and SubSyn

Varying the cell precision: It can be seen from Figure 2 that the proposed method has
achieved better performance compared with SubSyn [9]. This is probably because our
method has taken both indoor space connectivity and calibrating sampling points into
considerations while SubSyn considers neither.
Varying the path completed percentage: Figure 3 shows that, as the path completed

percentage gets higher, the prediction error is smaller. And compared with SubSyn and
T-DesP [10], our method can achieve significant better results than others. Our method
successfully coped with information loss based on the calibrated algorithm and BRNN
makes fully use of the information contained in the sampling points.
Transition probability and completed percentage are used to predict destination in T-

DesP, both of which have no relation with cell precision. So we do not compare with
T-DesP in cell precision experiment.
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6. Conclusions and Future Work. In this paper, we propose a new method for indoor
destination prediction based on bidirectional recurrent neural networks. This method
fully uses the feature of indoor space to predict destination more accurately. First, we
propose a method to preprocess the indoor space to deal with the problem of connectivity.
Second the sampling points are calibrated to address the problem of data sparsity by
using historical trajectory dataset. At last, we predict indoor moving object destination
with bidirectional recurrent neural networks by using calibrated sampling points. Our
experimental results show that this method has achieved better performance in indoor
destination prediction. In the future, we plan to combine the habit of users, then build a
unified system for accurate indoor destination prediction.
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