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Abstract. The automatic sound event recognition, which can achieve human-like sound
recognition performance on a variety of hearing tasks, has attracted considerable atten-
tion. The Spectrogram Image Feature is an effective feature extraction method in SER
system. Meanwhile, ELM-AE is a significant feature representation learning algorithm
with very high efficiency, but it suffers from non-effective performance on natural sig-
nals. In this work, a novel hierarchical ELM-based sparse auto-encoder (H-ELM-SAE)
algorithm is proposed to improve the robust and effective feature representation of the
original ELM-AE. Hierarchically encoded outputs are projected randomly in each layer
and then the each layer fused representations are respectively fed to the ELM classifiers
based two-stage ensemble learning (TsEL) algorithm to achieve the decision of the sound
signals. The experimental results on the RWCP Sound Scene Database show that the
proposed SER framework outperforms the state-of-the-art DNN algorithm, suggesting it
is potential for the SER system especially in noisy condition.
Keywords: Sound event recognition, Spectrogram image feature, Hierarchical ELM-
based sparse auto-encoder, Two-stage ensemble learning

1. Introduction. Acoustic sound event recognition (SER), which aims at processing the
continuous acoustic signal and converting it into symbolic descriptions of the correspond-
ing sound events present at the auditory scene [1,2], is attracting considerable attention
in recent years. SER can be utilized in a variety of applications, including context-based
indexing and retrieval, unobtrusive monitoring, and acoustic surveillance. Furthermore,
the detected events can be used as mid-level-representation in other research areas, e.g.,
audio context recognition, automatic tagging, and audio segmentation [1-3].

The SER system usually consists of three components, namely signal preprocessing,
feature extraction and classification [2]. The commonly extracted features for SER are
mostly hand-crafted descriptors, which are at a low semantic level, and also generic for dif-
ferent sound datasets without data-specificity [4]. In contrast to the hand-crafted features,
the learning-based feature representation methods have gained their good reputation for
SER in recent years, because they are data-specific and robust, and the learned features
have a higher semantic level [5].

The typical feature learning methods for SER include bag of words [6], sparse coding
[7], exemplar-based coding [8], and deep learning (DL) [9]. Specially, DL has achieved
great success in SER and performs superiorly to the commonly used hand-crafted fea-
tures. McLoughlin et al. [10] proposed to use deep neural network (DNN) classifier for
representing the time-frequency features from the stabilized auditory image (SAI) and
spectrogram image features (SIF), respectively, for SER. Notably, feature learning by
multiple restricted boltzmann machine (RBM) networks is the key point that this DNN
classifier can improve feature representation of original time-frequency features. Other
DL algorithms, such as deep belief network (DBN), convolutional neural networks (CNN)
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[11] and auto-encoder (AE) [12], have also been effectively used for SER. However, it is
still time-costing to train a deep network by these DL algorithms for a large-scale dataset.

The extreme learning machine (ELM) is a supervised learning algorithm based on single
layer feed-forward neural networks (SLFNs), which offers significant advantages, such as
effective performance, least user intervention, real-time learning and ease of implemen-
tation [13]. However, the ELM algorithms generally suffer from the problem that the
shallow architecture in ELM networks usually results in non-effective performance on the
natural signals (e.g., images/videos), even with a large number of hidden nodes.

To this end, the ELM based auto-encoder (ELM-AE) network is proposed in [14] and
its variants have also been proposed for different applications [14-16]. Kasun et al. at-
tempt to develop a novel multi-layer learning architecture with ELM-AE simply stacked
layer by layer for unsupervised representational learning from large-scale data, which is
several orders of magnitude faster than other DL algorithms. Furthermore, Tang et al.
[15] develop a novel ELM-based hierarchical learning framework for multilayer percep-
tron, which achieves more robust and better feature representation and generalization by
unsupervised multilayer encoding learning followed by supervised classification. Recently,
Tissera and McDonnell [16] present a method for synthesizing deep neural networks us-
ing ELMs as a stack of supervised auto-encoders, which enhances classification rates and
runtime complexity.

In this study, we propose a feature learning and classification framework for SER with
H-ELM-SAE and TsEL, in which H-ELM-SAE algorithm learns the robust feature rep-
resentations of sound segments layer by layer, and then a two-stage ensemble learning
algorithm is used to layer-wise fuse feature representations from H-ELM-SAE and clas-
sify sound events taking full advantage of the representations of each hidden layer. The
main contributions are threefold: (1) An ELM-SAE algorithm is proposed to achieve the
robust feature representation for sound signals; (2) An H-ELM-SAE algorithm is proposed
to capture the correlations among multiple ELM-SAE layers for further improving feature
representation; (3) A TsEL framework is proposed as a classifier to fuse the decisions of
H-ELM-SAE to improve classification performance and robustness.

2. H-ELM-SAE and TsEL Based Robust SER Framework. As shown in Figure 1,
the proposed SER framework consists of three components: feature extraction from sound
frame, H-ELM-SAE and TsEL. Firstly, the spectrogram image features (SIF) extraction
operation performs on a sound file to generate features for each segmented frame, which
have the same length for analysis [10]. The H-ELM-SAE algorithm is then implemented
on the SIF features for each frame to learn more effective feature representation, which will
generate multiple-layer mixed features. Next, in the first stage of the TsEL component,
the features mixed each layer representation and raw input data are first respectively
fed to the ELM classifiers to generate probability output values, and then the multiple
probability values are fused by the weighted voting based ensemble learning algorithm
to achieve the decision of the current frame. Finally, the second stage ensemble learning
algorithm is conducted on all the frames belonging to a sound file to fuse their decisions
and yield the final classification result for SER. The H-ELM-SAE and TsEL components
are introduced in the following sections. Since the SIF feature extraction is not the key
point of this work, please refer to [10] for details.

ELM is an effective SLFNs-based learning algorithm with randomly generated hidden
nodes as shown in Figure 2(a) [13]. The ELM theory can also be applied to building a
multi-layer AE, which performs layer-by-layer unsupervised learning [14,15].

For a training set {(xi, yi), i = 1, . . . , n}, the input data x is mapped to the ELM
random feature space with the network output by

fL(x) =
∑L

i=1
βihi(x) = h(x)β (1)
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hi(x) = g(ai · x + bi) (2)

where (ai, bi) represents randomly generated input weights and bias of hidden layer of
ELM. g(x) is the activation function, and βi is the output weights of the ELM network.

By adding a regularization term to improve the generalization performance and make
the solution more robust, the resulting solution β is given by [13]

β =

(
HT H +

I

C

)−1

HT Y (3)

As a variant of AE, ELM-SAE significantly improves the training speed [14] and also
achieves excellent representation performance by building multi-layer networks [15]. Fig-
ure 2(b) shows the input data is first transformed into an ELM random feature space,
and then a multi-layer unsupervised learning is conducted to achieve high-level feature
representation. The equation of the output of the ith hidden layer is written as

Hi = g (Hi−1 · β) (4)

Notably, each hidden layer of ELM-SAE works as an independent and separated feature
extractor. The H-ELM-SAE training architecture is structurally divided into two separate

Figure 1. Flowchart of the proposed H-ELM-SAE and TsEL framework
for SER

Figure 2. The network architecture of ELM and ELM-AE in (a) and (b), respectively
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phases in a multilayer manner: 1) unsupervised hierarchical feature representation and 2)
supervised feature classification. For the former phase, several ELM-SAEs with ℓ1 penalty
are utilized to extract multilayer sparse concatenated features which are mixed with the
input data layer by layer; while for the latter classification, several ELM-based classifiers
are conducted on layer-wise mixed features and the first-stage Ensemble Learning of these
classifiers is performed for final decision making.

The two-stage ensemble learning (TsEL) framework is proposed for SER on the mixed
ELM-SAE features, as shown in Figure 1. Specifically the first-stage ensemble learning
[17] is implemented on the base ELM-based classifiers of the layer-wise ELM-SAE features
generated from multi-layer ELM-SAE for each sound frame. And then, the second-stage
ensemble learning is conducted to fuse the decisions of multiple sound frames from the
first stage, and then generates the final classification decision for the current sound. It
is worth noting that various ensemble learning algorithms, such as majority voting and
weighted voting [10], can be used in this TsEL framework.

Weighted voting based first-stage ensemble algorithm: Suppose that pk
ij and

wk
ij (i = 1, . . . , I; j = 1, . . . , J ; k = 1, . . . , K) donate the probability and weight of the ith

base classifier on the jth class for kth frame, respectively.

wk
ij =

log
(
pk

ij

/
1 − pk

ij

)∑I
i=1 log

(
pk

ij

/
1 − pk

ij

) , i = 1, . . . , I; j = 1, . . . , J (5)

The final output of this multi-classifier ensemble learning is given by

sk
j = fj

(
wk

ij, Ŷ
k
ij

)
=

∑I

i=1
wk

ij · Ŷ k
ij , j = 1, . . . , J (6)

The final classification result of kth frame is decided by

labelk = arg max
j

(
sk
1, s

k
2, . . . , s

k
J

)
(7)

Second-stage ensemble algorithm: Based on [10], the final decision of multiple
frames corresponding to original sound is decided by the following three ensemble meth-
ods:

(1) the baseline method that considers the maximum class score from the mean of all
predictive probability values of classifiers as the final decision (denoted as -b):

label b = arg max
j

∑
k

sk
j (8)

(2) majority voting based ensemble learning (denoted as -v):

label v = arg max
k

(
arg max

j

(
sk

j

))
(9)

(3) weighted-voting based ensemble learning that weighs the votes of individual classi-
fiers by calculating the context energy ek (denoted as -e):

label e = arg max
j

∑
k

ek · sk
j (10)

3. Experiments and Results.

3.1. Dataset and data preprocessing. The performance of the proposed H-ELM-
TsEL algorithms for SER was evaluated on the Real World Computing Partnership
(RWCP) Sound Scene Database in Real Acoustic Environments [18]. The noise-corrupted
data use four background noise environments selected from the NOISEX-92 database,
namely ‘Destroyer Control Room’, ‘Speech Babble’, ‘Factory Floor1’ and ‘Jet Cockpit
1’ [4]. McLoughlin et al. have achieved the state-of-the-art performance on this RWCP
dataset with the DNN algorithm [10] and have provided the processed SIF feature data to
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reproduce the experiments. Thus we directly use this dataset with extracted SIF features
in this study. The details about SIF features and data processing can be found in [4,10].
The proposed H-ELM-TsEL algorithm was then implemented to learn feature represen-
tation from the extracted SIF features, and the learned features were further fed to the
TsEL framework for SER.

3.2. Experimental settings. We conducted two same experiments as those in [10] to
evaluate our proposed SER framework. In the first mismatched condition experiment, the
data in training set were exclusively clean sounds without noise, but the data in testing
set were corrupted by additive background noise at levels of 20, 10 and 0dB SNR. The
second experiment was the multi-condition evaluation, in which both the data in training
set and testing set comprised a variety of clean and noise-corrupted sounds. The 10-fold
cross-validation strategy is performed for all algorithms, and the result of classification
accuracy is given by the form of mean ± SD (standard deviation).

All the compared algorithms are listed as follows. (a) DNN: the results of DNN by
McLoughlin et al. in [10] were selected as the baseline. (b) ELM: the original SIF
features of each sound segment were directly fed to the ELM classifier. (c) ELM-AE: the
two-layer ELM-AE was implemented on SIF features for each sound segment with the
ELM classifier. (d) H-ELM-TsEL: the proposed H-ELM-SAE and TsEL based algorithm
was conducted on SIF features as shown in Figure 1. Here the two-layer structure of
ELM-SAE was used for the representational learning model and the first-stage ensemble
learning of three ELM-based classifiers was performed. It is worth noting that three
ensemble methods (-b, -v, -e) were used in the second stage of TsEL.

3.3. Results of the mismatched condition experiment. Tables 1 to 3 show the
classification results of different algorithms for the first mismatched condition experiment
with the -b, -v and -e ensemble learning methods in the second stage of TsEL, respectively.

Table 1. Classification results of different algorithms with the mean prob-
ability value ensemble learning (-b) at the second stage of TsEL (Unit: %)

Clean 20dB 10dB 0dB Mean
DNN 96.73 94.60 90.27 76.47 89.52
ELM 97.08±0.45 90.31±0.92 85.75±1.16 72.39±1.18 86.38±0.93

ELM-AE 97.68±1.31 94.25±1.53 92.28±2.04 86.63±1.43 92.71±1.58
H-ELM-TsEL 98.40±0.55 96.55±0.74 95.95±0.54 90.43±2.25 95.33±1.02

Table 2. Classification results of different algorithms with the context
voting ensemble learning (-v) at the second stage of TsEL (Unit: %)

Clean 20dB 10dB 0dB Mean
DNN 98.87 95.33 92.40 78.87 91.37
ELM 93.76±0.61 91.35±0.62 86.99±1.06 72.81±1.29 86.23±0.90

ELM-AE 95.53±2.35 92.28±1.67 89.40±1.70 81.93±1.86 89.78±1.90
H-ELM-TsEL 97.23±0.73 95.45±0.74 94.63±0.76 87.50±2.32 93.70±1.14

3.4. Results of the multi-condition evaluation experiment. Tables 4 to 5 give the
results of different algorithms on the second multi-condition evaluation experiment with
the -v and -e ensemble learning methods in the second stage of TsEL, respectively.



916 J. YIN AND J. ZHANG

Table 3. Classification results of different algorithms with e-scaled weight
ensemble learning (-e) at the second stage of TsEL (Unit: %)

Clean 20dB 10dB 0dB Mean
DNN 96.00 94.37 93.53 85.13 92.26
ELM 95.85±0.55 93.81±0.77 92.82±0.66 87.93±0.86 92.60±0.71

ELM-AE 95.03±2.43 94.43±1.09 93.33±1.82 90.33±1.43 93.28±1.69
H-ELM-TsEL 98.10±0.69 96.25±1.00 95.63±0.98 90.08±2.20 95.01±1.22

Table 4. Multi-condition (MC) classification results of different algo-
rithms with the context voting ensemble learning (-v) at the second stage
of TsEL (Unit: %)

Clean 20dB 10dB 0dB Mean
DNN 96.90 96.90 93.20 80.40 91.85
ELM 93.34±0.60 91.55±0.57 89.22±0.91 79.78±1.62 88.47±0.93

ELM-AE 94.23±0.76 93.38±1.49 91.65±0.76 86.88±1.60 91.54±1.15
H-ELM-TsEL 97.13±1.25 96.30±1.17 94.88±1.55 87.85±1.40 94.04±1.34

Table 5. Multi-condition (MC) classification results of different algo-
rithms with e-scaled weight ensemble learning (-e) at the second stage of
TsEL (Unit: %)

Clean 20dB 10dB 0dB Mean
DNN 94.70 95.80 92.10 87.70 92.58
ELM 93.91±0.71 94.34±0.61 93.90±0.86 91.51±0.91 93.42±0.77

ELM-AE 94.50±1.04 94.48±1.04 94.50±0.77 93.68±0.94 94.29±0.95
H-ELM-TsEL 97.43±0.46 97.28±0.61 96.93±0.51 96.40±0.61 97.03±0.55

4. Discussion. In the experiment, three levels of noise are added to clean sound data,
namely 20dB, 10dB and 0dB SNR conditions. With the increase of noise, the recognition
performance for sound events decreases for all algorithms used in this study. However, in
the 0dB SNR condition, the baseline DNN algorithm degenerates most rapidly compared
with all the ELM-AE based algorithms as shown in Tables 1 to 5, while the proposed
H-ELM-TsEL still achieves good performance with a more than 90% mean accuracy
only except the result in the -v ensemble learning method. Therefore, our H-ELM-TsEL
algorithm is effective and robust for SER, especially in the noisy environment.

There are three findings from the experimental results on RWCP Sound Scene Database:
1) ELM-AE outperforms the original ELM algorithm, which indicates that ELM-AE
model can improve the performance of ELM; 2) The proposed H-ELM-TsEL algorithm
by combining the ELM-SAE and TsEL models can further improve the representation
performance and robustness of original ELM-AE for sound data especially in high noise; 3)
The proposed H-ELM-TsEL framework is superior to the state-of-the-art DNN algorithm
in [10] for SER.

In the current H-ELM-TsEL framework, the ELM-SAE features are integrated by a
classifier- or decision-level fusion method, that is to say, ensemble learning can be applied
to all the classification results of individual ELM-SAE. Specifically, a weighted-voting
based ensemble learning algorithm is used in the first stage learning, which has shown
its effectiveness. It should be noted that other ensemble learning algorithms, such as the
margin distribution optimization method and the Adaboost-based method, also can be
applied in this framework. On the other hand, instead of the classifier- or decision-level
fusion, another way to properly integrate these ELM-SAE features is the feature-level
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fusion. For example, the multiple kernel learning (MKL) method can effectively combine
multiple channel features and then make a decision, since the multiple kernels in MKL
can naturally correspond to features from different views [19]. This feature-level fusion
method will be studied for our H-ELM-TsEL framework in the future.

5. Conclusions. This paper has proposed the H-ELM-SAE and two-stage ensemble
learning based feature learning and classification framework for robust SER, which classify
and synthesize on the layer-wise ELM-SAE representation mixed with original input. The
standard evaluation task has also revealed that the proposed H-ELM-SAE formulation
on the smoothed and de-noised SIF features achieves excellent classification accuracy and
anti-noise robustness, especially for the challenging 0dB SNR noise condition.
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