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Abstract. The research of classical maximum weight independent set problem always
assumes that the vertex weights are crisp values. However, in the real-life application, the
maximum weight independent set problem often comes with uncertainty for lacking of the
information about the vertex weights. Based on the uncertainty theory, this paper studies
a maximum weight independent set problem under an uncertain environment, in which
the vertex weights are assumed to be uncertain variables. First, a belief degree constrained
programming model is constructed for the problem. Furthermore, it is proved that there
exists an equivalence relationship between uncertain maximum weight independent set
model and the corresponding classic deterministic model. We also find that the maximum
weight of belief degree constrained programming model is actually decreasing with respect
to the predetermined confidence level. Finally, a numerical example is given to show the
application of the model.
Keywords: Independent set problem, Network optimization, Uncertain programming,
Uncertainty theory

1. Introduction. Independent set problem, known as an important network optimiza-
tion problem, was employed in many scientific and engineering applications, such as coding
theory [4], combinatorial auctions [20], and wireless network [21]. For a graph G = (V, E),
a subset I of V is said to be an independent set if no vertices in I are adjacent. The
maximum independent set problem (MISP) is the problem of finding an independent set
with largest cardinality in a given graph. An extension of the maximum independent set
problem is called the maximum weight independent set problem (MWISP), which is to
find an independent set with the maximum weight in a given weighted graph. In this
paper, we mainly focused on the MWISP.

Garey and Johnson [9] proved the MWISP is the core issue in NP-hard problems. In
the following years, some heuristic or metaheuristic solving techniques have been devel-
oped for the MWISP. For example, Feo and Resende [5] studied a greedy randomized
adaptive search procedure for maximum independent set of a graph. After that, Saha et
al. [19] presented an efficient parallel random access machine (PRAM) algorithm to find
a maximum weighted independent set of a permutation graph. Nayeem and Pal [17] used
the genetic algorithm to find the MWISP of a weighted graph.

It is worth pointing out that all of the above mentioned researches are concerned with
the MWISP in a deterministic environment, in which the vertex weights are assumed to
be crisp values. However, because of technical or economical reasons, the vertex weights
are indeterminacy in many situations. In these cases, it is not suitable to employ classical
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methods to study the MWISP. Hence, some researchers deemed such indeterminacy be-
haves like randomness. Based on this assumption, a lot of researches have been presented
within the framework of probability theory. For example, Krivelevich et al. [11] investi-
gated the probability of independent sets in random graphs. In addition, Gamarnik et
al. [6] studied the maximum weight independent sets in sparse random graphs. Beame
et al. [1] discussed the resolution complexity of independent sets and vertex covers in
random graphs.

However, the vertex weights of a graph may not be accurately measured according to
probability theory in reality. In fact, we may not get probability distribution of vertex
weights due to lack of information in some emergency case. In such case, we have to invite
some domain experts to give the belief degrees of the vertex weights. According to Nobelist
Kahneman and his partner Tversky [10], human beings usually overweigh unlikely events,
and thus the belief degree based on experts’ estimations may be far from the cumulative
frequency. In 2012, Liu [14] pointed out that if we insist on dealing with the belief degree
by using probability theory in this situation, some counterintuitive phenomena may occur.
Therefore, in this situation we have no choice but to use the uncertainty theory founded
by Liu [12] to deal with the belief degree. The interested readers may refer to Gao [7], Gao
and Chen [8], Liu [15], Liu et al. [16] about comprehensive development of uncertainty
theory.

As an important application of uncertainty theory, uncertain network was pioneered
by Liu [13] for modeling project scheduling problem with uncertain duration times. Since
Liu’s distinguished work, uncertain network has been extensively researched by several
scholars. For example, Zhang and Peng [22] proposed an uncertain programming model
for Chinese postman problem on uncertain weighted network. Chen et al. [2] investigated
the minimum weight vertex covering problem with uncertain vertex weights. Chen et al.
[3] studied the bicriteria solid transportation problem under an uncertain environment in
which the supplies, demands, conveyance capacities, transportation cost and transporta-
tion time were supposed to be uncertain variables. Zhang et al. [23] investigated the fixed
charge solid transportation problem under uncertainty. In Liu’s work [13], the uncertain
network was a network in which the arc capacities or lengthes were uncertain variables.
As an extension of uncertain network proposed by Liu [13], Peng et al. [18] gave the
definition of uncertain weighted network in 2014, that is, a network has uncertain vertex
weights or/and uncertain edge weights. In the work of Peng et al. [18], the uncertain
network optimization was defined as the study of network optimization with uncertain
data for decision making under the presence of uncertainties.

None of the previous works addressed the maximum weight independent set problem
(MWISP) in uncertain environment. In this sense, the first contribution of this paper
is that we introduce uncertainty theory to the MWISP. To be more precise, the vertex
weights are described by uncertain variables. The second contribution of this paper is that
the optimistic value criterion is used to rank the uncertain variables, and accordingly an
uncertain programming model is proposed. After presenting a study of the model, we have
moved on to provide some related theorems. The third contribution is that we prove that
the proposed model can be transformed into its corresponding deterministic form, which
implies an approach to solving the model. The relationship between the maximum weight
of belief degree constrained programming model and the predetermined confidence level is
investigated. We have further carried out a numerical experiment to show the application
of the model.

The rest of this paper is organized as follows. For facilitating the understanding of
the paper, some basic concepts and results related to uncertainty theory are outlined and
the classic maximum weight independent set problem is briefly reviewed in Section 2.
Section 3 proposes the concept of α-maximum independent set among uncertain weight
independent set. Next we present a belief degree constrained programming model for the
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problem. For the sake of illustrating the modeling idea of the paper, a numerical example
will be presented in Section 4. Finally, Section 5 gives our conclusions.

2. Preliminary. In this section, some basic concepts and results of uncertainty theory
are recalled, and the classic maximum weight independent set problem is briefly reviewed.

2.1. Uncertainty theory. Assume that Γ is a nonempty set, and L is a σ-algebra over
Γ. Each element Λ in L is called an event. A set function M : L → [0, 1] is called an
uncertain measure if it satisfies the following three axioms (Liu [12]):
Axiom 1. (Normality Axiom) M{Γ} = 1 for the universal set Γ.
Axiom 2. (Duality Axiom) M{Λ} + M{Λc} = 1 for any event Λ ∈ L.
Axiom 3. (Subadditivity Axiom) For every countable sequence of events Λ1, Λ2, . . . ,
we have

M

{
∞∪
i=1

Λi

}
6

∞∑
i=1

M{Λi}.

Definition 2.1. (Liu [12]) Let Γ be a nonempty set, let L be a σ-algebra over Γ, and let
M be an uncertain measure. Then the triplet (Γ, L, M) is called an uncertainty space.

Uncertain variable is mainly used to model the uncertain quantities. A formal definition
was given by Liu [12] as follows.

Definition 2.2. (Liu [12]) An uncertain variable is a function ξ from an uncertainty
space (Γ, L, M) to the set of real numbers such that {ξ ∈ B} is an event for any Borel set
B.

Theorem 2.1. (Liu [15]) Let ξ1, ξ2, . . . , ξn be independent uncertain variables with regular
uncertainty distributions Φ1, Φ2, . . . , Φn, respectively. If the function f(ξ1, ξ2, . . . , ξn) is
strictly increasing with respect to ξ1, ξ2,. . . , ξm and strictly decreasing with respect to
ξm+1, ξm+2, . . . , ξn, then

M{f(ξ1, ξ2, . . . , ξn) 6 0} > α

if and only if

f
(
Φ−1

1 (α), . . . , Φ−1
m (α), Φ−1

m+1(1 − α), . . . , Φ−1
n (1 − α)

)
6 0.

Example 2.1. Assume that ξ ∼ Z(a, b, c) is a zigzag uncertain variable where a, b, and c
are real numbers with a < b < c. Its uncertainty distribution Φ(x) and inverse uncertainty
distribution Φ−1(α) are given by

Φ(x) =


0, if x 6 a

(x − a)/2(b − a), if a 6 x 6 b

(x + c − 2b)/2(c − b), if b 6 x 6 c

1, if x > c,

and

Φ−1(α) =

{
(1 − 2α)a + 2αb, if α < 0.5

(2 − 2α)b + (2α − 1)c, if α > 0.5,

respectively.
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2.2. Classic maximum weight independent set problem. Let G = (V,E) be a
connected, undirected and simple graph with the vertex set V = {v1, v2, . . . , vn} and the
edge set E = {(vi, vj) | vi ∈ V, vj ∈ V, i < j}. An independent set in a graph G is
a subset I of V such that no two vertices in this subset are adjacent. There are two
basic problems in the area of independent set problem. One is maximum independent set
problem (MISP), and the other is maximum weight independent set problem (MWISP).
The objective of the MISP is to find a maximum subset of V such that there is no edge
between any two vertices in the subset. Assume that each vertex is associated with
a positive weight, and let the weight of an independent set be the total weight of its
vertices. The key issue of the MWISP is to find an independent set with a largest total
weight. In fact, the maximum independent set and maximum weight independent set all
belong to the independent set, but they are different. We give an example to illustrate
this point.

Example 2.2. Assume that there are 5 vertices in the graph G, the weight of each vertex
is shown in Figure 1.

j j2 3
4 2

j11

j j4 5
3 5

�
��
XXXXXXXXXXX

Figure 1. Weighted graph G

Obviously, the independent set I = {v1, v3, v4} is a maximum independent set, but is
not a maximum weight independent set. Similarly, the independent set I = {v2, v5} is a
maximum weight independent set, but is not a maximum independent set.

In this paper, we are mainly concerned with the problem of finding a maximum weight
independent set in the vertex weighted graph G, that is an independent set with maximum
weight. We write wi to denote the weight of each vertex vi, and all the weights are
presented by a vector w = (w1, w2, . . . , wn).

Let I ⊆ V , and

xi =

{
1, if i ∈ I

0, otherwise.

Then any independent set of the graph G can be denoted by an n-dimensional binary
vector x = {x1, x2, . . . , xn} over {0, 1}n. Similarly, any n-dimensional binary vector x =
{x1, x2, . . . , xn} over {0, 1}n corresponds to an independent set of G. Then the decision
variable set is denoted by x = {x1, x2, . . . , xn}.

Let the weight of an independent set be the total weight of its vertices. We formulate
the weight of independent set I as follows

W (I) =
∑
vi∈V

wixi.

According to the formal definition of the independent set, no vertices are adjacent in
an independent set. So a subset I of V is an independent set if and only if

xi + xj 6 1, ∀(vi, vj) ∈ E.
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Thus we construct the following mathematical model for MWISP as follows:

max
x

∑
vi∈V

wixi

subject to:

xi + xj 6 1, ∀(vi, vj) ∈ E

xi ∈ {0, 1} , ∀vi ∈ V.

(1)

3. Uncertain Mathematical Model. The model (1) assumes that the vertex weights
are crisp values. In practice, however, the weight of vertex usually is not a constant num-
ber. However, in many cases, we have a lack of observed data or observed data is invalid
because unexpected events have occurred. Then, one problem is naturally produced, that
is how can we deal with this kind of indeterminacy factors in the maximum weight in-
dependent set problem? In this situation, the vertex weight data can only be obtained
from the decision-makers’ empirical estimation in a practical way. As mentioned before,
uncertainty theory provides a new tool to deal with uncertain information, especially
subjective or empirical data. Hence, in this paper, we assume that vertex weights wi are
uncertain variables ξi, i = 1, 2, . . . , n, respectively. Without loss of generality, we also
assume that vertex weights are nonnegative and independent uncertain variables. All the
weights are presented by ξ = (ξ1, ξ2, . . . , ξn). Then the maximum weight independent set
problem becomes uncertain maximum weight independent set problem, which is denoted
by UMWISP for short. For UMWISP discussed in this paper, the independent weight
W (I) is still an uncertain variable. As is known for all of us, we cannot rank the uncer-
tain variables directly. Then we should employ some rank criteria to select the optimal
independent set.

Definition 3.1. Let G = (V, E) be an undirected and simple graph with uncertain vertex
weights. An independent set I∗ is called the α-maximum independent set among uncertain
weight independent set if

max
{
W | M

{
W (I∗) > W

}
> α

}
> max

{
W | M{W (I) > W} > α

}
holds for any independent set I of G, where α is a predetermined confidence level given
by decision maker.

Now we apply the belief degree constrained programming model to uncertain maximum
weight independent set problem, and present an α-maximum weight independent set
model: 

max
x

W

subject to:

M

{∑
vi∈V

ξixi > W

}
> α

xi + xj 6 1, ∀(vi, vj) ∈ E

xi ∈ {0, 1} , ∀vi ∈ V,

(2)

where α is the predetermined confidence level given by decision maker.

Theorem 3.1. Let G = (V, E) be an undirected and simple graph with uncertain vertex
weights, and ξi independent uncertain variables with regular uncertainty distributions Φi,
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i = 1, 2, . . . , n, respectively. Then the model (2) is equivalent to the following model

max
x

∑
vi∈V

xiΦ
−1
i (1 − α)

subject to:

xi + xj 6 1, ∀(vi, vj) ∈ E

xi ∈ {0, 1} , ∀vi ∈ V,

(3)

where Φ−1
i is the inverse uncertainty distributions of ξi.

Proof: It follows from Theorem 2.1 that

M

{∑
vi∈V

xiξi > W

}
> α

is equivalent to ∑
vi∈V

xiΦ
−1
i (1 − α) > W.

Then we can easily prove that the model (2) can be equivalently transformed into the
following deterministic model:

max
x

W

subject to:∑
vi∈V

xiΦ
−1
i (1 − α) > W

xi + xj 6 1, ∀(vi, vj) ∈ E

xi ∈ {0, 1} , ∀vi ∈ V.

(4)

Clearly, Model (4) is equivalent to Model (3). The theorem is proved. �

Definition 3.2. (Liu [13]) Let ξ be an uncertain variable, α ∈ (0, 1], and r ∈ R. Then

ξsup(α) = sup{r | M{ξ > r} > α}

is called the α-optimistic value to ξ.

Lemma 3.1. (Liu [13]) Let ξ be an uncertain variable. Then ξsup(α) is a decreasing
function with respect to α.

Since the objective of Model (3) is a function of the parameter α, the relationship
between the optimal objective and the parameter α should be investigated. The following
theorem will answer this question.

Theorem 3.2. Let α1 and α2 be two parameters, and W1 and W2 the corresponding
optimal objectives of Model (5). If α1 > α2, then we have W1 6 W2.

Proof: Let D be the feasible domain of Model (3). According to Lemma 3.1, the
optimistic value is a decreasing function with respect to α. Then we have

W1 =
∑
vi∈V

xiΦ
−1
i (1 − α1) 6

∑
vi∈V

xiΦ
−1
i (1 − α1) = W2.

Thus, the proof is completed. �
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4. Numerical Example. In this section, we give a numerical example to illustrate the
applicability of the proposed models as mentioned above. Suppose that there are eight
new projects for a company. We can draw a conflict graph G, where the vertex represents
a desirable project, and an edge joining two vertices vi and vj indicates that at most
one of vi and vj can be selected. Now, the task for the decision maker is to select as
many of the desirable projects as possible while not selecting two conflicting projects.
At the beginning of this task, the decision maker needs to obtain the basic data, such
as mercantile rate of return, profitability index, and static investment payback period.
However, due to economic reasons or technical difficulties, the decision maker always
cannot get these data exactly. For this condition, the usual way is to obtain the uncertain
data by means of experience evaluation or expert advice. The graph G is shown in Figure
2. Assume that all vertex weights are zigzag uncertain variables ξi, which are listed in
Table 1.

j j2 5

ξ2 ξ5

j j j jξ1 ξ3 ξ6 ξ8

1 3 6 8

j jξ4 ξ7

4 7

�
��

@
@@

@
@

�
��

�
��

@
@ �

��

@
@

Figure 2. Uncertain weighted graph G

Table 1. List of ξi

ξi Φi ξi Φi

ξ1 Z(2, 3, 4) ξ5 Z(5, 6, 7)

ξ2 Z(3, 4, 5) ξ6 Z(2, 3, 6)

ξ3 Z(2, 3, 5) ξ7 Z(5, 7, 9)

ξ4 Z(2, 5, 7) ξ8 Z(5, 7, 8)

When α=0.9, we can calculate Φ−1
i (0.1) for each ξi. The values are listed in Table 2.

Table 2. List of Φ−1
i (0.1)

ξi Φ−1
i (0.1) ξi Φ−1

i (0.1)

ξ1 2.2 ξ5 5.2

ξ2 3.2 ξ6 2.2

ξ3 2.2 ξ7 5.4

ξ4 2.6 ξ8 5.4

According to the model (3), the 0.9-maximum weight independent set problem can be
formulated as follows:

max
x

W

subject to:

M

{
8∑

i=1

ξixi > W

}
> 0.9

xi + xj 6 1, i, j = 1, 2, . . . , 8, i < j

xi ∈ {0, 1} , i = 1, 2, . . . , 8.

(5)
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According to Theorem 3.1, the model (5) is equivalent to the deterministic programming
model: 

max
x

8∑
i=1

xiΦ
−1
i (0.1)

subject to:

xi + xj 6 1, i, j = 1, 2, . . . , 8, i < j

xi ∈ {0, 1} , i = 1, 2, . . . , 8.

(6)

The optimal solution of the model (6) can be obtained as x∗ = (0, 0, 1, 0, 1, 0, 1, 0)T

by using the values listed in Table 2 and the mathematical software (e.g., LINGO). The
optimal value of the objective is equal to 12.8. Since the objective of the belief degree
constrained programming model is a function of the parameter α, the sensitivity of the
optimal objective can be investigated with respect to different parameters. The following
predetermined confidence levels are selected to test the sensitivity: α = 0.1, 0.2, 0.3, 0.4,
0.5, 0.6, 0.7, 0.8, 0.9. By choosing different confidence levels α, we obtain Table 3. From
Table 3, we find that α has an effect on the optimal solutions, and the total weight of
the maximum weight independent set increases as the confidence level α decreases, which
just coincides with Theorem 3.2.

Table 3. List of α-maximum weighted independent set

α optimal solution x∗ α-maximum weighted

independent set
maximum weight

0.9 (0, 0, 1, 0, 1, 0, 1, 0)T {3, 5, 7} 12.8

0.8 (0, 0, 1, 0, 1, 0, 1, 0)T {3, 5, 7} 13.6

0.7 (0, 0, 1, 0, 1, 0, 1, 0)T {3, 5, 7} 14.4

0.6 (0, 0, 1, 0, 1, 0, 1, 0)T {3, 5, 7} 15.2

0.5 (0, 1, 0, 1, 0, 0, 0, 1)T {2, 4, 8} 16

0.4 (1, 0, 0, 0, 1, 0, 1, 0)T {1, 5, 7} 16.8

0.3 (1, 0, 0, 0, 1, 0, 1, 0)T {1, 5, 7} 17.6

0.2 (0, 0, 1, 0, 1, 0, 1, 0)T {3, 5, 7} 19

0.1 (1, 0, 0, 0, 1, 0, 1, 0)T {1, 5, 7} 19.2

5. Conclusions. In the real-life application, we usually encounter some uncertain factors
due to lack of observed data about the unknown state of nature. Different from other
researches in indeterminacy environment, this paper investigated the uncertain maximum
weight independent set problem based on uncertainty theory, and the vertex weights were
assumed to be uncertain variables. The main contributions include the following three
aspects. (i) In order to deal with uncertain factors in maximum weight independent set
problem, uncertainty theory was introduced into the problem under the light of uncertain
environment. (ii) A belief degree constrained programming model for maximum weight
independent set problem in uncertain environment was proposed. We found that the
maximum weight of belief degree constrained programming model was actually decreasing
with respect to the predetermined confidence level. (iii) The illustrative example was given
to show the application of the proposed model.

The proposed uncertain programming models in this paper have their unique advan-
tages, that is, they can be transformed into their corresponding deterministic forms. In
spite of these advantages, a few issues need to be addressed in the future. For example, we
can continue to study the maximum bisection problem in uncertain environment within
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the axiomatic framework of uncertainty theory. In addition, the current work can be
extend to the uncertain random environment, where uncertainty and randomness coexist
in a system.
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