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ABSTRACT. A soft-sensor model based on the output-layer structure feedback (OSF) El-
man neural network (NN) is proposed to predict the conversion velocity and conversion
rate of vinyl chloride monomer (VCM) in the polyvinylchloride (PVC) polymerization
process. In view of the deficiencies of the original Elman NN, such as simple function
of the structure layers and not considering the feedback of nodes in the output layer, the
feedback is introduced between the output layer and the structure layer to make the whole
network more rigorous without complicated structure. Simulation results show that the
improved Elman NN can significantly improve the prediction accuracy of the conversion
velocity and conversion rate of VCM and meet the real-time control requirements of poly-
merization reactor production process.

Keywords: PVC polymerization process, Elman neural network, Soft sensor, Output-
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1. Introduction. Polyvinyl chloride (PVC resin) is one of the plastic varieties which is
the first industrialization realization of the plastics in the world and is one of the most
widely used polymers [1]. By using the vinyl chloride monomer (VCM) as raw materials,
the production of polyvinyl chloride (PVC) resin by suspension polymerization method
is a typical intermittent chemical production process. The different VCM conversion has
a certain impact on the molecular weight of PVC resin, thermal stability, porosity, the
residues of VCM, the absorptivity of plasticizers and processing liquidity [2]. As a result
of the immature detection device and the complexity of the suspension polymerization
reaction, the vinyl chloride conversion rate and conversion velocity are hard to acquire in
real time, so it is difficult to achieve direct closed-loop control. Elman neural network is
a typical local recursive neural network with time delay feedback, which introduces the
feedback signal and stores the internal states to realize the dynamic mapping function
based on the BP neural network. The Elman NN model has been applied in many fields,
such as classification of epileptic seizures [3], forecasting wind speed [4], pressure control
for emulsion pump station [5], actuator fault diagnosis of autonomous underwater vehicle
6], short-term load forecasting [7] and motor fault detection [8]. The Elman neural
network was integrated with the quantum computation to improve the precision based on
the approximation and information processing ability of quantum computation [7]. The
genetic algorithm (GA) was used to optimize the weights of Elman NN to realize the
detection of the motor fault [8]. However, the adoption of the optimization algorithms
must increase the complexity of the algorithm and reduce the computational efficiency.
In the standard Elman NN, the function of the structure layers is too simple in that
it only likes a delay operator to remember the output value of the hidden layer at the
previous moment. On the other hand, Elman NN only takes account of the feedback of
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the double hidden layers, without taking account of the feedback of nodes in the output
layer. So, in this paper, the feedback is introduced between the output layer and the
structure layer in the standard Elman NN to make the whole network more rigorous
without complicated structure. Then the comparison simulation experiments are carried
out with standard Elman NN to prove the good performance of the proposed OSF Elman
NN. The paper is organized as follows. In Section 2, the technique flowchart of the PVC
polymerization process is introduced. The output-layer structure feedback (OSF) Elman
neural network (NN) is presented in Section 3. In Section 4, the simulation experiments
and results analysis are introduced in detail. The conclusion is illustrated in the last part.

2. Technique Flowchart of PVC Polymerization Process. A typical PVC poly-
merization kettle technological process is shown in Figure 1 [2].

In [2], the hot balancing mechanisms of polymerizer and the influenced factors of conven-
tion rate of VCM are analyzed in detail. According to characteristics of polymerization
process, the factors influencing conversion velocity are initiator concentration, reaction
temperature and polymerize degree. So ten process variables related to VCM conversion
rate and conversion velocity are selected as secondary variables of soft-sensor modeling.
They respectively are kettle temperature (TIC-P101), kettle pressure (PIC-P102), baffle
water flow (FIC-P101), jacket water flow (FIC-P102), injection water flow (FIC-P104),
seal water flow (FIC-P105), inlet temperature of cooling water (for jacket water and baffles
water sharing, TI-P107), outlet temperature of jacket water (TI-P109), outlet tempera-
ture of baffle water (TI-P110), inlet temperature of injection water and seal water (namely
the outlet temperature of the cold water tank, TIC-WAO1).

Switched agents >} {>4—— Steam
VSP-PX03 VENT VSP-PX21
High pressure flush water [}
P-00 VSP-PX04 y
Terminate agent —— Bl <} I » SFAF
- i R
ATIEN ! (TICY VSP-PX08 VSP-PX09
& 7 R104/
. T - e s TK.E
Water feed )!<]—‘—>[><17 VSP-PX10 TE-IE
VSP-PX01 o
———— <l Flush water
VSP-PX12
Impact modifiers < ; [ VCM feed
VSP-PX37 - . VSP-PX23
/P i
\P102) -
— : (/‘T[ \
i \ P,]_I,O/’
I
T (I 2 i _
107/ i \p102/ - T
: \ST/ R S - \Piog/
Cooling water S —
FV-PX02
o) %
) N
| oY
Y 1 P-98 ~
NIJ I r=; \
- > ><l4—— Stcam
FV-PX01
0 _ SP-PX36 VSP-PX16TFV-PX03
N R \
] <]#—Flush water
. E— VSP-PX25 . .
Feed af dispersing - P/ ‘Adding material
agent and initiating > —~ < water
agent N ,@‘ VS’E-PXL]{/EQ:} VSP-PX14 VSPPX13 VSP_-PXZZ
WAQY ! \P103/ . PU-XT:
- [£ ! VSP-PX26
Sealing water L e

FV-PX05

VSP-PX19

Trench
VSP-PX33

FiGURE 1. Technique flowchart of polymerization kettle
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3. Output-Layer Structure Feedback Elman Neural Network.

3.1. OSF-Elman neural network. Elman NN belongs to a kind of feedback neural
network. In order to make the network have the memory function, the feedback is added
between the hidden layer and the structure layer. The structure of Elman NN is shown
in Figure 2(a). It has a special structural unit besides the input layer, hidden layer and
the output layer. The structure of OSF-Elman NN is shown in Figure 2(b).
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FIGURE 2. Structure of Elman neural network and OSF Elman neural network

The addition of the feedback between the output layer and the structural layer in Elman
neural network has no effect on the weights between the output layer and the hidden layer
and the weights between the input layer and the hidden layer, which does not increase
the computation complexity of network. It can be seen from Figure 2(b) that the output
in structural layer at kK moment is equal to the output in the hidden layer at k-1 moment
plus « times of the output in the structural unit at k-1 moment.

zok)=a -z (k—1)+x(k—-1) 1=1,2,3,....,n (1)

where x.; is the output of the Ith structure layer, x;(k) is the output of the /th hidden
layer, and « is a self-connected feedback gain factor. So the mathematical model of
OSF-Elman NN is shown as follows.

z(k) = f (WH(zo(k) + y(k)) + Wu(k — 1)) (2)
ze(k) = (vo(b—1)+y(k—1)) +z(k —1) (3)
yr = g (W3z(k)) (4)

where W1 is the weights between structural layer and hidden layer, W? is the weights
between the input layer and hidden layer, W3 is the weights between the output layer and
hidden layer, f(z) is the Sigmoid activation function of hidden layer neurons, g(z) is a
linear activation function of output layer neurons. Their expressions are listed as follows.

f@) = 1 )

ye = Wi (k) (6)

where ;. is the output of the network model.
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3.2. Learning algorithm of OSF-Elman neural network. The error function £ is
defined as:

B = 3 (yalk) = y(0)" (k) — (k) @

where y,4(k) is expected output and y(k) is the real output. The calculation expression
y(k) is fed into Equation (7) to obtain:

oF 0y; (k)
J0r —(Yai(k) — y(k))W = —(yai(k) — y(k))g;(")z; (k) (8)
1) )
where wg’j is the weight between the hidden layer and the output layer, y,, represents the
target values and y; is the predicted output of the model.
Set 8) = (yai(k) — y(k))gi(:) to obtain:
oF
owy;

=—0x;(k) i=12,....om j=1,2....n (9)

where g/(-) is the derivative of activation function of the output layer neurons. At the
same time, the partial derivative of W? is described as follows:

507 = B (R %y;E;j) = > (~0%wh) £yl = 1) (10)

ij i=1

where w?j is the weight between the input layer and the hidden layer, u,(k — 1) is the
input values of the input layer at previous moment and f}(-) is the derivative of activation
function of the hidden layer.
; h _ 0,,3\ £/ -
Alike, set 6} = > (6;wy;) fi(+) to obtain:

or
6w;3j

= —0lu(k—1)  j=12....n q=12..r (11)

At last, the connection weight W from the following layer to the hidden layer is carried
out the partial derivation to obtain:

OE & O (k) ,
_—E 59w J =1,2,... [=1,2,... 12
awjll — ( 1wz]) aw;l j )y < ,Tl )y <y 7n ( )

where wjl»l is the weight between the input layer and the hidden layer. The calculation
Oz (k)

expression of the S is described as follows:
il
or;(k) 0 " !
ot = a1 [fj (Z b0 k= 1) + 3w - 1>)]
! 8xc (K
0 [xc,juo ol 1)+ S g 2 )] (13)
i

where . j(k) is the output of the jth structural unit. It can be seen from the structure
diagram that the basic relationship between x.(k) and wjl-l can be ignored. So when the
dependence of x.(k) on the connection weight wjl-l is not considered, the following equation
can be obtained.

Oz;(k)
owj,
where z;(k) is the output of the jth hidden layer unit

[ize(k) = () (@e(k = 1) + wi(k — 1)) + afj(-)ze (k) (15)

= [i()(@es(k — 1) + u(k — 1)) (14)
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Equation (15) is fed into Equation (14) to obtain:

T = O all = 1)+ k= 1) + 020D (16)
Based on AW = —n%, the learning algorithm of Elman NN can be described as.
Aw}y =méjz;(k)  i=1,2,...,m; j=1,2,...,n (17)
sz :7725%9( -1) g=1,2,...,r; j=12,....n (18)
Aw'. —ngz 50w ) 81’] k) 1=1,2,...om: j=12...n (19)

]l
where 7,, 1o and 73 are the learning steps of W', W?2 and W3, respectively.

07 = (yai(k) — y(k))gi(") (20)
g5 = (00wi) fi() (21)

3.3. Parameter settings of OSF-Elman neural network. Before adjusting the con-
nection weights, a random initial value to each connection weights is set. Since the system
is non-linear, the initial values have a large effect on whether the network converges or
falls into local minima or not. It is generally hoped that the initial value of weights can
make the state of each neuron close to zero, but not equal to zero or equal to a constant.
Otherwise, the system cannot be trained. According to the experimental exploration of
a number of scholars, the initial weights are selected as the random number in the scope
(—0.3,40.3), which can be very good to ensure that the network’s normal training. Dur-
ing the training process, the learning rate can be automatically adjusted, and the principle
can be expressed as follows.

1.050(k) SSE(k) > SSE(k — 1) x 1.04
n(k+1)=< 0.75n(k) SSE(k) < SSE(k—1) (22)
n(k) others

where SSE is the sum of the squared errors of the network output. The selection of the
initial learning rate 7(0) is very random, and it is generally initialized as 0.1.

On the other hand, in order to avoid the correction of the connection weight matrix
falling into the smallest of energy, the momentum item mc can be added in the correction
process of the coefficient matrix of the connection weights. The following equation can
be used to adjust the momentum value.

0 SSE(k) > SSE(k —1) x 1.04
me =< 095 SSE(k) < SSE(k—1) (23)
mc  others

When SSE (k) < SSE(k—1), it shows that the sum of the network error at this moment
is less than the previous one, so the initial value of momentum factor mc is 0.95.

4. Simulation Experiments. In this paper, the polymerization industrial process of
a chemical factory with 40000 tons/year polyvinyl chloride (PVC) production device is
taken as background, whose technology is introduced by American B-F-G company. The
input dimension of OSF-Elman network is 10, the output dimension is 1, the number of
hidden layer nodes is 25, and the output unit adopts the linear activation function. In
order to measure the performances of prediction models, several performance indicators
are defined in Table 1, where ¢ is predicted value and y is actual value.

The production historical data of PVC polymerization process are collected and 2 kettle
including 1600 sets historical data with the uniformity and representativeness are chosen.
Then after data preprocessing the data is divided into two parts, the front 1500 sets
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data is the training data, and the rest 100 sets data is used to validate the performance
of soft-sensor model. The simulation results are shown in Figure 3 and Figure 4. They
show the comparison between the standard Elman NN and the OSF-Elman NN to predict
the conversion velocity and conversion rate of the VCM, respectively. The performance
comparison results are shown in Table 2.

It can be seen from the simulation results that the proposed soft-sensor model based
on the OSF-Elman NN is more accurate than the standard Elman neural network. It is

TABLE 1. Definition of model performance index

Maximum positive error ~ MPE = max {(y —y),0}
Maximum negative error ~ MNE = min {(y — y),0}

n
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FI1GURE 3. Simulation results of conversion velocity of VCM
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FIGURE 4. Simulation results of conversion rate of VCM

TABLE 2. Performance comparison results of different soft-sensor models

Predictive variables Model MPE MNE SSE RMSE
. . Elman  0.1398 —0.0783 0.0040 0.0638
Conversion velocity - ap proan 0.0629 —0.0432  0.0003 0.0173
Elman  14.3965 —16.2978 0.0040 5.0785
OSF-Elman 3.0617 —4.2171 0.0003 2.9867

Conversion rate

important to improve the production capacity and reduce the production cost of VCM
by predicting the VCM conversion velocity and conversion rate.

5. Conclusions and Future Work. This paper proposes a soft-sensor model of PVC
polymerizing process based on the OSF-Elman neural network. The simulation results
show that the improved Elman NN has higher accuracy in predicting the conversion
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velocity and conversion rate of VCM than standard Elman NN. In future, the swarm
intelligent optimization methods will be used to optimize the parameters of Elman NN.
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