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Abstract. In this paper, a stage-structured prey-predator model with cannibalism in
the prey is constructed and investigated for the purpose of integrated pest management.
To address how such factors influence successful pest control, hybrid impulsive control
of pesticide sprays and natural enemy releases were proposed and analyzed. The pest-
eradication periodical solution of the model is globally stable. However, when the im-
pulsive period is greater than some threshold, the pest population and natural enemy
population can coexist. Multiple attractors from which the pest population oscillates with
different amplitudes can coexist for a wide range of parameters. Numerical simulations
imply the switch-like transitions by varying the numbers of natural enemies released.
Keywords: A stage-structured prey-predator model, Cannibalism, Integrated pest man-
agement, Global stability, Permanence

1. Introduction. In this paper, we consider the stage-structured prey-predator model
with cannibalism for the purpose of integrated pest management. Recently, more and
more scholars have studied the stage-structured prey-predator models in the pest man-
agement; many methods have been proposed to control the pest population, such as
spraying pesticides and releasing natural enemies. Some papers are devoted to formulat-
ing models to study it [1, 2]. As is well known, impulsive state feedback control strategies
are widely used in real world problems. For example, in the pest management, control
measures will be taken when the pest population reaches the Economic Threshold (the
pest population density at which control measures should be undertaken to prevent an
increasing pest population from reaching the economic injury level which is the lowest
pest population density that will cause economic damage) [3, 4, 5].

The basic stage-structured prey-predator model with cannibalism [6] is

dx1(t)

dt
= b1x2(t) − cx1(t) − b2x1(t)x2(t) −m1x1(t),

dx2(t)

dt
= cx1(t) + sb2x1(t)x2(t) −m2x2(t) −

a1x2(t)y(t)

1 + x2(t)
,

dy(t)

dt
=
a2x2(t)y(t)

1 + x2(t)
−m3y(t),

(1)

where x1(t), x2(t) and y represent the densities of immature prey, mature prey and preda-
tor, respectively. We give the following assumptions for the model. b1, c and m1 represent
the birth rate, recruitment rate and death rate of the immature prey population, re-
spectively; b2 denotes the cannibalism attacking rate of the mature prey population; m2

denotes the death rate of the mature prey population; s is the conversion rate of the
immature prey into the mature prey due to cannibalism, and according to the biological
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meaning, it is easy to know s < 1; the parameter m3 and a1 represent the death rate
and attacking rate of the predator population, respectively. a2 is the rate of conversion
of nutrients into the reproduction of the predator.

Let (x∗1(t), x
∗
2(t), y

∗(t)) be any solution of system (1), and it is easy to know that

x∗1(t) =
b1m3

(a1 −m3)(c+m1) + b2m3

,

x∗2(t) =
m3

(a1 −m3)
,

y∗(t) =
cx1(t) + sb2x1(t)x2(t) −m2x2(t)

m3

,

(2)

it is obvious that if a1 > m3, then x∗1(t) > 0, x∗2(t) > 0, y∗(t) > 0, which means that
system (1) has and only has a positive equilibrium point and system (1) is permanent.

In this article, we consider the stage-structured predator-prey model with cannibalism
for pest management. In the second section, we proposed the combination of biological
(natural enemies), cultural (catching), and chemical (killing) tactics that eradicates the
pest to extinction, and prove the locally asymptotical stablility, globally asymptotical
stablility for the the pest-eradication solution. Finally, we numerically studied the system
with respect to bifurcation diagram for implusive T .

2. Biological Integrated Control Strategy.

2.1. The model with an impulsive effect at fixed moment. A constant periodic
releasing for the predator and a proportional periodic impulsive catching or poisoning for
the pest populations at fixed moment are described as follows

dx1(t)

dt
= b1x2(t) − cx1(t) − b2x1(t)x2(t) −m1x1(t)

dx2(t)

dt
= cx1(t) + sb2x1(t)x2(t) −m2x2(t) −

a1x2(t)y(t)

1 + x2(t)
dy(t)

dt
=
a2x2(t)y(t)

1 + x2(t)
−m3y(t)


t ̸= nT,

△x1(t) = −p1x1(t), △x2(t) = −p2x2(t), △y(t) = τ t = nT,

(3)

where △x1(t) = x1(t
+) − x1(t), △x2(t) = x2(t

+) − x2(t), △y(t) = y(t+) − y(t), and T is
the period of the impulsive effect. It is easy to find that all solutions of system (3) remain
positive if the initial conditions are positive and 0 ≤ p1 ≤ 1, 0 ≤ p2 ≤ 1, τ ≥ 0.

In the section, some notations, definitions and lemmas which are useful for stating and
proving main results are given. Let R+ = (0,+∞), R3

+ =
{
X = (x1, x2, x3) ∈ R3 : x1,

x2, x3 > 0
}
. Denote f = (f1, f2, f3) the mapping defined by the right-hand side of system

(3). Let V0 = (V : R+ × R3
+ → R+), V0 is continuous on (nT, (n + 1)T ] × R3

+ and
lim(t,y)→(nT+,x) V (t, y) = V (nT+, x) exists.

Definition 2.1. For V ∈ V0 and (t, x) ∈ (nT, (n + 1)T ] × R3
+, the upper right Dini

derivative of V (t, x) with respect to the impulsive differential system (3) is defined as

D+V (t, x) = lim
h→0+

sup
1

h
[V (t+ h, x+ hf(t, x)) − V (t, x)] ,

the solution of system (3) denoted by Z(t) = (x1(t), x2(t), y(t)) : R+ → R3
+, Z(t) is

continuous on (nT, (n + 1)T ], n ∈ N , and Z(nτ+) = limt→nτ+ Z(t) exists. Obviously,
the global existence and the uniqueness of solution of system (3) are guaranteed by the
smoothness properties of f , for details see [7].
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Lemma 2.1. Let V ∈ V0, and assume that{
D+V (t, x) ≤ g(t, V (t, x)), t ̸= nT,

V (t, x(t+)) ≤ ψn(V (t, x(t))), t = nT,
(4)

where g : R+ ×R+ 7→ R satisfies: g is continuous in (nT, (n+ 1)T ]×R+ and for x ∈ R+,
n ∈ N , lim(t,y)→(nT+,x) g(t, y) = g(nT+, x) exists. And ψn : R+ 7→ R+ is non-decreasing.

Let r(t) be the maximal solution of the scalar impulsive differential equation u
′
(t) =

g(t, u(t)), t ̸= nT , △u(t) = ψn(u(t)), t = nT , u(0+) = u0 ≥ x0. Then V (0+, x0) ≤ u0

implies that V (t, x(t)) ≤ r(t) for t ≥ 0 where x(t) is any solution of system (3). For
convenience, we give some basic properties of the following system

u
′
(t) = −wu(t), t ̸= nT,

△u(t) = τ, t = nT,

u(0+) = u0 ≥ 0.

(5)

Lemma 2.2. System (5) has a positive periodic solution u∗(t), and for every solution
u(t) of system (5) with positive initial value u(0+), |u(t) − u∗(t)| → 0 as t → ∞, where

u∗(t) = τ exp[−w(t−nT )]
1−exp(−wT )

, nT < t ≤ (n+ 1)T , n ∈ N , u(0+) = τ
1−exp(−wT )

.

Theorem 2.1. There exists a positive constant L, such that x1(t) ≤ L, x2(t) ≤ L,
y(t) ≤ L for each solution (x1(t), x2(t), y(t)) of system (3) with positive initial values,
where t is large enough.

Proof: Define a function V such that V (t) = x1(t)+x2(t)+ y(t). Then V (t) ∈ V0, and
the upper right derivative of V (t) is described as

D+Vt|(1,1) +mV (t) = b1x2(t) − (1 − s)b2x1(t)x2(t) − (m1 −m)x1(t)

−(m2 −m)x2(t) − (m3 −m)y(t) − (a1 − a2)x2(t)y(t)

1 + x2(t)
≤ l0,

(6)

where m = min{m1,m2,m3}, we see that

V (nT+) = V (nT ) + τ, (7)

according to Lemma 2.1, we have

V (t) = V (0)e−mt +
∫ t

0
le−m(t−s)ds+

∑
0<nT<t

me−m(t−nT )

≤ V (0)e−mt +
l(1 − e−mt)

m
→ l

m
+

τemT

emT − 1
, t→ ∞,

(8)

consequently, by the definition of V (t), we obtain each solution of system with positive
initial values is uniformly ultimately bounded above. �
2.2. Stability of pest-eradication solution. The solution of system (3) corresponds
to x1(t) = 0, x2(t) = 0 which is called pest-eradication solution.

Theorem 2.2. The pest-eradication periodic solution (0, 0, y∗(t)) is locally asymptotically
stable.

Proof: For y, according to Lemma 2.2, we obtain the form of the unique positive

periodical solution with pulses: y∗(t) = τ exp[−m3(t−nT )]
1−exp(−m3T )

, nT ≤ t ≤ (n + 1)T , n ∈ N with

initial value y∗(0) = τ
1−exp(−m3T )

. Now, we study the stability of the pest-eradication

solution. And the Jacobi matrix H(t) at (0, 0, y∗(t)) and I(t) are as follows

H(t) =

 −(c+m1) b1 0
c −(m2 + a1y

∗(t)) 0
0 a2y

∗(t) −m3

 , I(t) =

 (1 − p1) 0 0
0 (1 − p2) 0
0 0 1

 ,
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we can calculate the monodromy matrix M(t)

M(t) = I(t) exp

(∫ T

0

H(t)dt

)
=

 µ1

µ2

µ3

 , (9)

where µ1 = (1 − p1) exp(−(c + m1)T ), µ2 = (1 − p2) exp
(∫ T

0
(m2 + a1y

∗)dt
)
, µ3 =

exp(−m3T ). It is obvious that |µ1| < 1, |µ3| < 1, so the stability of (0, 0, y∗(t)) is decided

by µ2; if |µ2| < 1, it would be stable. That is, µ2 = (1 − p2) exp
(∫ T

0
(m2 + a1y

∗)dt
)
< 1,

we calculate that when T > − 1
m2

(
ln 1

(1−p2)
+ a1τ

m3

)
, the pest-eradication solution is locally

stable. In fact, as periodic time T is always a positive constant, in this situation, the
periodic solution (0, 0, y∗(t)) is locally asymptotically stable without any conditions. �

Further, we would prove that the pest-eradication solution is globally asymptotically
stable.

Theorem 2.3. If T >
{
− 1

c+m1
ln 1

1−p1
,− 1

m2
ln 1

1−p2

}
, then the pest-eradication solution

of system (3) is globally asymptotically stable.

Proof: From the first equation of system (3), we easily get that x
′
1(t) ≥ −(c+m1)x1(t)

considering the following equation{
z
′
1(t) = −(c+m1)z1(t), t ̸= nT,

△z1(nT ) = −p1z1(nT ), t = nT,
(10)

by Lemma 2.2 and system (10), we obtain that

z1 = z1(nT
+) exp

(∫ t

nT

(c+m1)dt

)
= z1

(
nT+

)
exp((−c−m1)(t− nT )), (11)

by the second equation of system (10), we get the difference equation

z1((n+ 1)T+) = (1 − p1)z1(nT
+) exp((−c−m1)(t− nT )), (12)

here, we obtain that T > − 1
c+m1

ln 1
1−p1

when (1 − p1) exp((−c − m1)T ) > 1, then

z1(nT
+) = (1 − p1) exp((−c − m1)T )z1(0

+) → 0 as n → ∞. So system (10) has a
globally asymptotically stable periodic solution z∗1(t) = 0.

Next, we prove that y(t) → y∗(t) as t → ∞. From the third equation of system (3),
note that y

′
(t) ≥ −m3y(t). Consider the following impulsive differential equation

z
′
3(t) = −m3z3(t), t ̸= nT,

△z′
3(t) = τ, t = nT,

z3(0
+) = y(0+) ≥ 0,

(13)

by Lemma 2.1 we get that y(t) ≥ z3(t) > y∗(t)− ε. For a sufficiently small ε > 0, we have{
y(t) ≤ ε−m3y(t), t ̸= nT,

△y(t) = τ, t = nT,
(14)

by Lemma 2.2 we get that

y∗(t) =
τ exp[−m3(t− nT )]

1 − exp(−m3T )
, nT < t ≤ (n+ 1)T, n ∈ N, (15)

we have y(t) < y∗ + ε. Then combining y(t) > y∗ − ε and y(t) < y∗ + ε, we obtain
y∗ − ε < y(t) < y∗ + ε for t large enough. Let ε→ 0, and we get y(t) → y∗(t) as t→ ∞.
Therefore, the periodic solution (0, 0, y∗(t)) is globally asymptotically stable. �
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(a) The parameters are fixed as p1 = 0.3, p2 = 0.2, τ = 0.1, b1 = 2.5, c = 1,
b2 = 0.65, m1 = 0.5, s = 0.5, m2 = 0.3, a1 = 3, a2 = 2, m3 = 0.3.

(b) The parameters are fixed as p1 = 0.7, p2 = 0.8, τ = 0.2, b1 = 2.5, c = 1, b2 = 0.65,
m1 = 0.5, s = 0.5, m2 = 0.3, a1 = 3, a2 = 2, m3 = 0.3.

Figure 1. Bifurcation diagram for impulsive period T

Theorem 2.4. If T <
{
− 1

c+m1
ln 1

1−p1
,− 1

m2
ln 1

1−p2

}
, then system (3) is uniform perma-

nent.

Proof: As Theorem 2.1 states, there exists a positive constant L, such that x1(t), x2(t),
y(t) ≤ L; we only need to find a positive constant H, such that x1(t), x2(t), y(t) ≥ H for
t large enough. we can easily get that x1(t), x2(t), y(t) satisfy the following three systems
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respectively, 

x
′
1(t) = −(c+m1) ∗ x1(t), t ̸= nT,

△x1(nT ) = −p1x1(nT ), t = nT,

x
′
2(t) = −m2 ∗ x2(t), t ̸= nT,

△x2(nT ) = −p2x2(nT ), t = nT,

y
′
(t) = −m3 ∗ y(t), t ̸= nT,

△y(nT ) = τ, t = nT.

(16)

By Lemma 2.1, Lemma 2.2 and Theorem 2.3, for any sufficient small positive number ε,

when T <
{
− 1

c+m1
ln 1

1−p1
,− 1

m2
ln 1

1−p2

}
, the following three inequalities hold

x1(nT
+) ≥ (1 − p1) ∗ exp(−(c+m1)T )x1(0

+) − ε = h1,

x2(nT
+) ≥ (1 − p2) ∗ exp(−m2T )x2(0

+) − ε = h2,

y(t) > y∗(t) − ε = h,

(17)

so x1(t), x2(t), y(t) are ultimately positively bounded below and every solution of system
(3) will eventually enter and remind in region Ω = {(x1(t), x2(t), y(t)) : x1 ≥ h1, x2 ≥
h2, y ≥ h, x1(t) ≤ L, x2(t) ≤ L, y(t) ≤ L}. �

3. Numeric Analysis and Discussion. In order to understand how these control
method affect the final state of the pest population, we numerically studied the model
with respect to bifurcation parameter of impulsive period T .

In Figure 1(a), we studied the impact of impulsive period on the complexity of system
(3), according to numerical results, There are very complicated dynamic behavior, such as
period-doubling cascade, symmetry-breaking pitchfork bifurcation, and chaos. When T
lies in [4, 5], it seems to keep stable. As T increase from 5 to 5.4, the periodic attractor ap-
pears, subsequently, a cascade of period-doubling bifurcations leading to chaos. However,
when we consider the significance of initial values, we can find some different conclusions
from Figure 1(b). We can find that there are three different solutions of system when
T ∈ (12.8, 13.7).

Figure 2. Three coexisting attractors of T = 13.6, the other parameters
fixed as p1 = 0.7, p2 = 0.8, τ = 0.2, b1 = 2.5, c = 1, b2 = 0.65, m1 = 0.5,
s = 0.5, m2 = 0.3, a1 = 3, a2 = 2, m3 = 0.3



ICIC EXPRESS LETTERS, PART B: APPLICATIONS, VOL.8, NO.5, 2017 809

Figure 3. Attractors’ switch-like behavior with small random pertubation
on parameter τ , the other parameters as shown in Figure 2

In order to give some detailed explanations of coexistence attractor in Figure 1(b), we
can find that different initial values affect the coexistence of attractors. When T = 13.6,
there exist three different types of impulse state as shown in Figure 2. That is to say,
initial values are the key factor in the integrate pest management strategy. Furthermore,
when small random perturbations are introduced in the parameter τ of the system (3),
numerical simulations imply that those solutions can switch to another attractor with
smaller amplitude at a random time (Figure 3). This implies that impulsive effect makes
the dynamic behavior of system more complicated. A lot results suggest a new and
appropriate approach in pest control, and we hope that these results could bring a bright
insight to pest management.

4. Conclusion. This work focused entirely on the stage-structured predator-prey model
with impulsive effects and the temporal interactions of an insect pest and its natural
enemy. The pest-eradication periodical solution of the model is global stable. Numerical
simulations imply the switch-like transitions by varying the numbers of natural enemies
released.
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