
ICIC Express Letters
Part B: Applications ICIC International c⃝2017 ISSN 2185-2766
Volume 8, Number 4, April 2017 pp. 727–733

A STUDY ON BEHAVIOR ACQUISITION OF MOBILE ROBOT
BY DEEP Q-NETWORK

Hikaru Sasaki1, Tadashi Horiuchi2 and Satoru Kato3

1Advanced Engineering Faculty
2Department of Control Engineering

3Department of Information Engineering
National Institute of Technology, Matsue College

14-4 Nishi-ikuma, Matsue, Shimane 690-8518, Japan
{ s1509; horiuchi; kato }@matsue-ct.ac.jp

Received September 2016; accepted December 2016

Abstract. Deep reinforcement learning is a framework which combines deep learning
and reinforcement learning. Deep Q-network (DQN), recently proposed by V. Mnih et
al. is a successful method which uses convolutional neural network (CNN) in order to
approximate the action-value function in Q-learning, a widely-used reinforcement learn-
ing algorithm. DQN can learn successful policies directly from high-dimensional sensory
inputs using reinforcement learning in Atari 2600 video games. In this research, we ap-
ply DQN to robot behavior learning in the simulation environment. We realize that the
mobile robot itself learns to acquire good behaviors such as avoiding the walls and moving
along the center line by using high-dimensional visual information as input data. The
mobile robot has three cameras: one is in front of the robot and others are in left and
right directions of the robot. Through the simulation experiment using the robot simula-
tor Webots, we confirm the effectiveness of this method.
Keywords: Deep learning, Reinforcement learning, Deep Q-network, Robot behavior
learning, Convolutional neural network

1. Introduction. Deep learning is a framework of machine learning using deep neural
network by which automatic feature extraction is enabled from raw data such as image
data and acoustic data. Convolutional neural network (CNN) [1, 2] is attracting consider-
able attention as one of the deep learning methods. CNN is a family of multi-layer neural
networks in which the hidden units have local receptive fields. CNN consists of feature
extraction part and classification part, both of which are trainable by back-propagation
method.

Deep Q-network (DQN), recently proposed by V. Mnih et al. [3, 4], is a successful
framework which combines reinforcement learning with CNN. DQN can learn successful
policies directly from high-dimensional sensory inputs using reinforcement learning in the
classic Atari 2600 video games. In DQN, CNN is used in order to approximate the action-
value function called Q-function in Q-learning [5] which is a widely-used reinforcement
learning algorithm.

In this research, we construct the simulation environment for two-wheeled mobile robot
and then we apply DQN to the robot learning in the simulation environment. We realize
the mobile robot learns to acquire good behaviors such as avoiding the wall and moving
along the center line by using high-dimensional visual information as input data. In this
research, we propose a modified method of DQN which stores the best target network
parameters so far and replace the target network to the best target network so far if the
performance of DQN using the updated target network decreases suddenly in performance
evaluation (test run phase). Through the simulation experiment using robot simulator
Webots, we confirm the effectiveness of our proposed method for robot behavior learning.

727



728 H. SASAKI, T. HORIUCHI AND S. KATO

2. Convolutional Neural Network (CNN). CNN is a variant of multi-layer neural
networks particularly designed for use on two-dimensional data such as images and videos
[2]. In CNN, the hidden units have local receptive fields as in the primary visual cortex
and the weights are tied or shared across the image in order to reduce the number of
parameters. CNN consists of feature extraction part and classification part, both of
which are trainable by back-propagation method. Figure 1 illustrates network structure
of CNN. In the feature extraction part, there are several pairs of convolution process and
pooling process.

Figure 1. Network structure of CNN

[Convolution process]. First of all, the input image is convolved with a set of N small
filters whose coefficients (weights) are trained by supervised learning. By convolution
process using N small filters, N “feature maps” are obtained. A feature map is obtained
by convolving the input image with a linear filter, adding a bias term and then applying
a non-linear function.

[Pooling process]. This first stage is followed by pooling process that reduces the di-
mensionality and offers robustness to spatial shifts. In the pooling process, several typical
methods have been proposed. For example, max-pooling is an operation to take a maxi-
mum value in each 2 × 2 region. Average-pooling is an averaging operation in each 2 ×
2 region. In this research, we use max-pooling method. The results of pooling process
become inputs to the next convolution process and then convolved with a set of small
filters again.

[Classification part]. The outputs of the last pooling process of feature extraction part
are forwarded to the fully-connected multi-layer perceptron that produces the final clas-
sification output of the system.

[Learning algorithm]. In CNN, all weights of the fully-connected multi-layer perceptron
in classification part and coefficients of the filters in feature extraction part are trained
by the standard back-propagation algorithm.

3. Deep Q-Network (DQN). DQN, recently proposed by V. Mnih et al. [3, 4], is a
successful framework which combines reinforcement learning with CNN. DQN can learn
successful policies directly from high-dimensional sensory inputs using end-to-end rein-
forcement learning in the classic Atari 2600 video games.

In reinforcement learning, we consider the learning tasks in which the agent interacts
with an environment through the sequence of state observations, actions and rewards.
The goal of the agent is to select actions to maximize the cumulative future reward [6].



ICIC EXPRESS LETTERS, PART B: APPLICATIONS, VOL.8, NO.4, 2017 729

CNN is used in DQN in order to approximate the following optimal action-value func-
tion called optimal Q-function:

Q∗(s, a) = max
a

E
[
rt + γrt+1 + γ2rt+2 + · · · |st = s, at = s, π

]
(1)

which means the maximum sum of reward rt discounted by γ at each time step t, based
on a policy π = P (a|s) after making a state observation s and taking an action a. CNN’s
output that is used in DQN is Q-value for an action taken by agent. Figure 2 shows
network structure of CNN in DQN.

Figure 2. Network structure of CNN in DQN

Reinforcement learning is known to be sometimes unstable or even to diverge when a
nonlinear function approximator such as a neural network is used to represent the action-
value function (Q-function). There are several reasons for this instability such as 1) the
correlations present in the sequence of state observations; 2) small updates to Q-value
may significantly change the policy and therefore change the data distribution.

In order to overcome the above problems, DQN uses the method termed experience
replay. To perform experience replay, the agent’s experiences et = (ϕt, at, rt, ϕt+1) at each
time step t are stored in the data set D = {e1, . . . , et}. During learning, we apply Q-
learning updates on samples of experience (ϕj, aj, rj, ϕj+1) drawn uniformly at random
from the data set. The Q-learning update at iteration i uses the following loss function:

Li(θi) = E

[(
r + γ max

a′
Q

(
s′, a′; θ−i

)
− Q(s, a; θi)

)2
]

(2)

in which γ is the discount factor and θi are the network parameters of the Q-network at
iteration i, and θ−i are the network parameters used to compute the target at iteration
i. The full algorithm of deep Q-learning with experience replay is shown in Figure 3.
In Figure 3, ϵ denotes a small portion of probability for the random action selection
in ϵ-greedy method, D is a data set to store the set of transition (ϕt, at, rt, ϕt+1) for the
experience replay, j means the ordinal number in the set of minibatch data, and C denotes
the interval to update the network parameters (the network parameters are updated every
C steps).

4. Application of DQN to Robot Learning. In this research, we apply DQN to robot
behavior learning in the simulation environment. We realize the behavior acquisition
of two-wheeled mobile robot in the simulation environment. For this purpose, we use
Cyberbotics’s robot simulator Webots.



730 H. SASAKI, T. HORIUCHI AND S. KATO

Algorithm 1. Deep Q-learning with experience replay
for episode = 1,M do

Initialize sequence s1 = x1 and preprocess ϕ1 = ϕ(s1)
for t = 1, T do

With probability ϵ select a random action at

otherwise select at = argmax Q(ϕ(st), a; θ)
Execute action at in emulator and observe reward rt and image xt+1

Set st+1 = st, at, xt+1 and preprocess ϕt+1 = ϕ(st+1)
Store transition (ϕt, at, rt, ϕt+1) in the data set D
Sample random minibatch of transitions (ϕj, aj, rj, ϕj+1) from D

Set yj =

{
rj if episode terminates at step j + 1

rj + γ maxa′ Q̂(ϕj+1, a
′; θ−) otherwise

Perform a gradient descent step on (yj − Q(ϕj, aj; θ))
2 with respect to the

network parameters θ

Every C steps reset Q̂ = Q
end for

end for
end

Figure 3. Algorithm of deep Q-learning with experience replay

(a) Simulation environment (b) Two-wheeled mo-
bile robot

(c) Candidate actions
of mobile robot

Figure 4. Simulation environment and two-wheeled mobile robot

[Problem setting]. The target task for the agent is to acquire the behavior of two-
wheeled mobile robot to move without collision to the walls in the problem environment
as shown in Figure 4(a). Figure 4(b) illustrates the overview of two-wheeled mobile robot.
The size of the problem environment is 3[m] × 3[m] and the width of the road is 60[cm].
The center line is painted by gray color in the center of the road. The shape of road is
like a slanted digit ‘8’ as shown in Figure 4(a).

The specifications of two-wheeled mobile robot are shown in Table 1. The robot has a
camera on top of the robot in order to get a front view. This camera outputs the image
with 50×30 [pixels] size. Figure 5 illustrates four examples of camera images of the robot.
In this figure, the walls are colored with black, the floor is colored with gray, the center
line is colored with white, and the body of robot is colored with dark gray.



ICIC EXPRESS LETTERS, PART B: APPLICATIONS, VOL.8, NO.4, 2017 731

Table 1. Specification of two-wheeled mobile robot

Diameter of body 16[cm]
Height 12[cm]
Diameter of wheels 5[cm]
Camera 1 direction
Distance sensors 8 directions

Figure 5. Examples of camera image from top of the robot

The robot also has distance sensors with 8 directions, which enable to measure the
distance between robot and walls. The range of the sensor values is between 0 and 1, 000.
When the robot is far away from the walls, the sensor value is 0. On the other hand,
when the robot is very near to the wall, the sensor value is almost 1, 000. The measurable
range of this sensor is between 70[cm] and 1.0[cm].

[Definition of action, state and reward]. The robot takes an action at each time step
among four candidates:

at =


a1 (go straight)
a2 (turn right)
a3 (turn left)
a4 (go backward).

The action “go straight” is realized by rotating both wheels clockwise and the robot
moves forward about 5.0[cm] by this action. The action “rotate clockwise” is realized by
rotating the left wheel clockwise and rotating the right wheel counter-clockwise. By this
action, the robot moves about 7.0[cm] and turns around about 13.2[deg] to the clockwise
direction. The action “rotate counter-clockwise” is realized by opposite motions of the
two wheels. Taking an action at each time step means 1 step action in this research.

The state observation is defined using the camera images and 8 distance sensors of the
robot. Suppose the camera image at time step t is xt, we get ϕt = ϕ(xt) by applying the
preprocessing function ϕ. Here, preprocessing function transforms the RGB color image
to the gray-scaled image. The state st is defined by using the most recent two frames ϕt,
ϕt−1. Hence, st = {ϕt, ϕt−1}.

The reward rt at time step t is defined by using the values of 8 distance sensors of the
robot as follows:

rt =


10 (when robot is far away from the wall)
−1 (when robot selects the backward action)
−20 (when robot collides to the wall)
0 (otherwise).



732 H. SASAKI, T. HORIUCHI AND S. KATO

The structure of CNN is as follows: there are two hidden layers each of which has 8× 8
filters and 2×2 max-pooling. The number of filters is 32 both in the first convolution layer
and in the second convolution layer. The inputs are four gray-scaled images of 50 × 30
[pixels] size. The number of nodes in the hidden layer of classification part is 256. The
number of nodes in the output layer is 4, which equals the number of action candidates
of the robot.

[Modification of DQN for robot learning]. In the original DQN as shown in Figure

3, every C steps we clone the network Q to obtain a target network Q̂ and use Q̂ for
generating the targets yj for the following C updates to Q. This makes the algorithm
more stable compared with standard Q-learning. Generating the targets yj using an older
set of network parameters adds a delay between the time an update to Q is made and the
time the update affects the targets yj, making oscillations much more unlikely.

However, in our problems of the robot behavior learning, the original DQN shows
unstable learning performance. In this research, we propose a modified method of DQN
which stores the best target network parameters so far and replace the target network
Q̂ to the best target network so far Q̂best if the performance of DQN using the updated
target network Q̂ decreases suddenly less than 30% in performance evaluation (test run
phase).

5. Experiment. In the problem setting described in the previous section, we execute
the experiment using robot simulator Webots. The action selection is made by ϵ-greedy
method. The value of ϵ is 0.2 in this experiment. During the first 10 thousand steps, the
robot only collects the pairs of experienced states, actions and rewards without learning.
The data are stored in data set D. The size of data set D is 100, 000 and the value
of discount rate γ is 0.99 in this experiment. After 10 thousand steps, the network
parameters are updated using 32 pairs of data (minibatch size = 32) from data set D.
At every 5, 000 steps of learning, the evaluation (test run) is performed for 5, 000 steps.
Both in learning phase and test run phase, the robot restarts action selection from the
far away point (near the center line) from the wall, when the robot collides to the wall.

We executed 5 sets of simulation experiments with different random seeds. Figure
6 illustrates the change of average accumulated reward in each test run for 5 sets of
experiments. In this figure, the horizontal axis indicates the number of evaluations (test
runs) and vertical axis means the accumulated reward at each test run. Compared with
Figure 6(a) and Figure 6(b), we can confirm that our proposed method shows much better
performance than the original DQN for the robot nagivation problem.

(a) Result without modification (original DQN) (b) Result with modification (our method)

Figure 6. Change of accumulated reward at test run (comparison of orig-
inal DQN and our method)



ICIC EXPRESS LETTERS, PART B: APPLICATIONS, VOL.8, NO.4, 2017 733

Figure 7. An example of acquired behaviors by our method

We also confirm that good behaviors such as avoiding the wall and moving along the
center line are acquired by using the network with high reward. Figure 7 shows an example
of acquired behaviors in the final stage of learning. Although it is not different from the
behavior trajectory such as shape of ‘8’ digit number which we expected, the accumulated
reward in this run is very high.

6. Conclusions. In this research, we proposed a modified method of DQN for robot
behavior learning. We constructed the simulation environment for two-wheeled mobile
robot and then we apply the proposed method to the robot behavior learning in the
simulation environment. By the proposed method, we realized the mobile robot learns
to acquire good behaviors such as avoiding the wall and moving along the center line by
using high-dimensional visual information as input data.

There are several future work such as: 1) acceleration of DQN learning method; 2)
applying the proposed method to the real two-wheeled robot with Raspberry Pi and Web
cameras.

Acknowledgment. This research was supported by JSPS KAKENHI Grant Number
15K00355 from the Japan Society for the Promotion of Science.

REFERENCES

[1] Y. LeCun et al., Gradient-based learning applied to document recognition, Proc. of the IEEE, vol.86,
no.11, pp.2278-2324, 1998.

[2] I. Arel et al., Deep machine learning – A new frontier in artificial intelligence research, IEEE Com-
putational Intelligence Magazine, vol.5, no.4, pp.13-18, 2010.

[3] V. Mnih et al., Playing Atari with deep reinforcement learning, Proc. of NIPS 2013 Deep Learning
Workshop, 2013.

[4] V. Mnih et al., Human-level control through deep reinforcement learning, Nature, vol.518, pp.529-
533, 2015.

[5] C. J. Watkins and P. Dayan, Technical note: Q-learning, Machine Learning, vol.8, pp.279-292, 1992.
[6] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction, The MIT Press, 1998.


