
ICIC Express Letters
Part B: Applications ICIC International c⃝2017 ISSN 2185-2766
Volume 8, Number 3, March 2017 pp. 587–592

EFFICIENT DANGLING POINTER DETECTOR
FOR C/C++ PROGRAMS

Zhenyu Yang

Information Center
China Tobacco Guangxi Industrial CO., LTD.

No. 28, Beihu South Road, Xixiangtang District, Nanning 530001, P. R. China
zhenyuyang2016@163.com

Received September 2016; accepted December 2016

Abstract. Dangling pointer error is a notorious memory error in C/C++ programs.
It is hard to debug and is often leveraged to compromise the security of systems. This pa-
per introduces an efficient runtime system to detect all dangling pointer error in C/C++
programs. Our work is based on a key finding: objects allocated in the same execution
context are likely to be freed together. Based on this insight, we propose a new heap design
and a new kernel page fault handler to detect accesses to already-freed objects. Compared
with previous state-of-the-art work (introduces up to 21X overhead), our detector intro-
duces acceptable runtime overhead (with 34%) and consumes less physical memory on
allocation intensive benchmarks.
Keywords: Dangling pointer error, Execution context, Heap design, Kernel page fault
handler

1. Introduction. Dangling pointer error (accessing already freed memory location) is a
representative memory error in C/C++ programs. On the one hand, it is notoriously hard
to debug, limiting the productivity of programmers [1]. On the other hand, it degrades
the reliability and security of systems and in many cases it is exploited to achieve some
kind of attacking (double free vulnerability in SQL [2]).

Detecting dangling pointer error is an old topic. However, previous work all falls short
on some aspects. Static analysis methods [3] are often trapped by high ratio of false-
positives. Runtime detecting methods [1] can detect all dangling pointer errors but nor-
mally introduce large overhead. For example, the famous Valgrind [4] tool which is used
to check all memory errors usually introduces over 8-10X overhead due to its mechanism
(dynamic instrumentation [5]) to trap every load and store instruction. Instrumenting
all memory accesses at compiling time also introduces over 3-4X overhead [6,9,10]. The
state-of-the-art work [1] gives each object a single virtual page and leverage page fault
mechanism to detect dangling pointer error. It exhibits good performance on some small
memory-footprint applications. However, when applied to any application that allocates
large amount of objects or memory, it introduces unacceptable overhead (for the Olden
benchmark suite it introduces up to 11X overhead [1]) due to virtual memory explo-
sion and tlb miss (see details in Section 2). Overall, previous tools are not practical to
be adopted in production environment because of their high runtime overhead. A high
efficient mechanism is thus desirable.

This paper introduces a high-efficient detector for dangling pointer error. Our method
is based on a key insight: the objects allocated in the same context are likely to be freed
in the same context together. We will demonstrate in this paper (see Section 2) that most
objects allocated in the same call stack (context) are freed together, indicating a better
heap design to put all these objects into the same virtual page. Thus, if one object is freed,
we just set the corresponding virtual page (the object resides in) to be unaccessible (in

587



588 Z. YANG

page table). Further accesses to the already-freed object will trigger page fault and we can
determine whether this is a dangling pointer error. For other accesses to the valid objects
in the same virtual page, we argue that this situation seldom happens because according
to our findings, they are likely to be freed together and are not likely to be accessed after
one of them is freed. However, this situation happens with certain possibility. For this
we introduce a memory access monitoring method based on page fault mechanism: if
upper applications access one valid object in a virtual page which has already being set
un-accessible, a page fault will be triggered. In the page fault handler we will let the
kernel perform the memory access for the application and we do not change the state of
the virtual page (see detail in Section 3). We maintain the virtual page to be un-accessible
and thus we are able to trap further memory accesses to this page and detect all dangling
pointer errors. Experiments show that our work can detect all dangling pointer errors
with little overhead (within 34%) and is much better than the state-of-the-art work (up
to 11X overhead) on allocation intensive benchmarks [1].

The organization of the rest of this paper is as follows. We introduce background and
our key findings in Section 2. We describe the design of our method in Section 3. Section
4 shows experimental results and Section 5 concludes this paper.

2. Background and Motivation. Memory access monitoring is the core to detect dan-
gling pointer error. Previous studies all focus on trapping and examining every memory
access in order to check if it accesses already-freed objects. Dynamic and compiler in-
strumentation [5,6] inserts examination code before every memory access instruction to
perform memory access monitoring and is too heavy (3-10X overhead). Current state-of-
the-art work [1] is more efficient as it is based on the paging mechanism supported by the
underlying hardware.

The idea of the state-of-the-art work is shown in Figure 1. When serving the upper
applications’ object allocation calls (malloc in C), it gives each object a single virtual
page and maps these virtual pages into the same physical page. The one-object-one-
virtual-page mechanism greatly facilitates monitoring memory accesses to the objects.
For example, if the upper application frees the object B (calls free(B)), it then sets the
corresponding virtual page to be un-accessible in the page table. Then if any instruction
accesses the object B, it reports that a dangling pointer error has been detected.

This mechanism works fine for the applications that allocate small amount of object.
However, for allocation intensive applications [1], it introduces unacceptable overhead
due to virtual space explosion and tlb miss. For example, for the benchmark espresso [7],
it allocates 10,000+ objects of small sizes (less than 64 bytes), consuming 1,000X more
virtual spaces, leading to 1,000X more tlb miss and over 20X runtime slowdown. The
main source of overhead is its mechanism to give each object a single virtual page.

Above all, a näıve way to optimize the state-of-the-art work is to allocate more objects
on one virtual page to reduce virtual page usage. However, doing this will introduce other
problems and overhead. For example, if objects A and B are in the same virtual page and

Figure 1. Previous many-to-one mapping method



ICIC EXPRESS LETTERS, PART B: APPLICATIONS, VOL.8, NO.3, 2017 589

Figure 2. Average ratio

we just freed B, then the virtual page should be set un-accessible and thus we can catch
further accesses to B (through page fault mechanism). However, we want to let normal
accesses to A executed as usual. In order to achieve this, we introduce a mechanism that
we let the kernel perform the memory access for the application (see detail in Section 3).
This is done every time when object A is accessed and the page fault is triggered. Thus,
here we introduce another main source of overhead: the page fault.

To reduce this kind of overhead (the page fault triggered when accessing valid objects),
here we introduce our key findings that some groups of objects (allocated in the same
context) may be safely put into the same virtual page and there is a high possibility
that if one object in the virtual page is freed, other objects of the same group are likely
to be freed soon and will not be accessed. Thus, the page fault is seldom triggered in
our mechanism. Figure 2 shows our experimental results on benchmarks from Olden
benchmark suite and the benchmark espresso. For example, for the benchmark espresso,
the y axis means that 88% of objects which are allocated in the same context (call stack)
are freed together in another same context. Thus, if we put these objects into the same
virtual page, we can greatly reduce the page fault overhead and at the same time detect
all the dangling pointer errors.

3. Efficient Dangling Pointer Error Detector. This section gives our design of ef-
ficient dangling pointer error detector. Our design is based on the findings introduced
in Section 2 and contains two parts: (1) a memory allocator (supports malloc and free)
that dynamically collects context information and allocates objects according to their
contexts; (2) a kernel page fault handler that lets memory accesses to valid objects go
through un-accessible virtual pages.

3.1. Memory allocator. We build our memory allocator based on the widely-adopted
memory allocator Hoard [7,11,12]. When serving malloc from upper applications, a mem-
ory allocator would firstly ask a large piece of virtual memory (called chunk in this paper)
from operating system (using mmap) and then return a proper piece to upper applications
to use. Traditionally, memory allocators (such as Hoard) organize chunks into different
classes. As shown in Figure 3(a), the 8-byte chunk only allocates objects of 8 bytes while
the 64-byte chunk only allocates objects of 64 bytes. 1-16 bytes allocation will be severed
in the 16-byte chunk and 17-32 bytes allocation will be severed in the 32-byte chunk and
so on. This strategy is simple and can serve malloc and free at very high performance.



590 Z. YANG

Figure 3. Heap organization

In our mechanism, as we need to put objects of the same context into the same virtual
page, we organize the chunks according to different contexts as shown in Figure 3(b). For
example, if currently we are in context A, then all the memory allocations are served in
the Context A chunk. The objects may have different sizes. Here we use a bitmap to store
the allocation information for different chunks. One bit in the bitmap represents 8 bytes.
Lastly, we get the current context (call stack) using backtrace mechanism (the Linux
backtrace function, man backtrace to see details). Above all, this chunk organization
enables us to put objects of the same context in the same virtual page.

3.2. Page fault handler. In our mechanism we put several objects into the same virtual
page. If one object is freed, we need to set the whole virtual page to be un-accessible
(in page table) to catch further accesses to the freed object. However, further accesses to
valid objects in the same virtual page must execute normally. A näıve idea to achieve this
is when a page fault is triggered by accessing valid objects, we can first set the virtual
page to be accessible and let the memory access go. Then after the access we set the
virtual page to be un-accessible again to trap further accesses. The problem is, after we
set the virtual page to be accessible, we are not able to trap the further accesses to the
same page because further memory accesses to that virtual page will all execute without
triggering any page fault.

To solve this problem, here we introduce a mechanism to let normal accesses run without
compromising the ability to monitor accesses to freed objects. First, as shown in Figure
4, in our memory allocator we map two virtual pages to each physical page (this could
be done at chunk allocation time. We use mmap to allocate a whole chunk from Linux
kernel and we can use mmap to map two virtual chunks to the same physical chunk,
just like inter-process memory sharing). For the two virtual pages, one is used in upper
applications and may be set un-accessible to detect dangling pointer error. Another one
is always accessible and will be used in our kernel. Thus, at anytime, the kernel could
always use the second virtual page to access objects. Second, we perform the following
operations when the upper application triggers page fault by accessing valid objects: (1)

Figure 4. Access control by page mapping



ICIC EXPRESS LETTERS, PART B: APPLICATIONS, VOL.8, NO.3, 2017 591

get the instruction which triggers page fault through the ip counter. This instruction is a
memory accessing instruction; (2) decode this instruction and do the memory accessing
through the accessible virtual page (as shown in Figure 4). For example, if the instruction
is load eax, [addr], we will access the object of addr using the corresponding accessible
virtual pages (the second virtual page as shown in Figure 4) and fetch the data into
kernel stack (eax register on the kernel stack). The decoding and translation can be
done by leveraging previous table-based binary translation tools (such as libdetox) [8];
(3) increase the ip counter to jump to the next instruction. Above all, the kernel could
do the memory access for applications to access un-accessible pages without changing the
state of the virtual pages, which allows us to catch further accesses to freed objects.

4. Experimental Results. This paper introduces a high-efficient detector for dangling
pointer error (we call DDPE in this section). In experiment we mainly test and show its
runtime overhead and compare it with the state-of-the-art work [1] (we call Pre in this
section) to show its advantages on allocation intensive applications.

Our experimental platform is an AMD server (12-core opteron 7174) equipped with
64GB physical memory running Linux 3.11. The benchmark we use is Olden benchmark
suite and espresso [7]. All the benchmarks allocate large amount of objects and virtual
memory.

The experimental results are shown in Figures 5 and 6. Figure 5 shows the normalized
execution time. We can see for all the benchmarks except bh, em3d, and power, Pre
introduces obvious overhead, ranging from 2X to 21X. This is because of its design to
give each object a single virtual page that causes virtual space explosion and more tlb
miss. For the benchmark bh, em3d, and power, they allocate less objects and thus Pre
achieves better performance. The DDPE represents our work. We can see for all the
benchmarks, our DDPE achieves much better performance (with 34% overhead) than Pre
because of our new design of heap. We can see the overhead of our mechanism (DDPE) is
mainly determined by the object allocation and deallocation pattern of upper applications
as discussed in Section 2 (see Figure 2).

Figure 6 shows the normalized memory overhead. Pre uses more physical memory
because it needs more slot in page table to store the mapping information for increased
virtual pages it uses for each object. Our DDPE uses more padding memory as we have
to allocate object according to different allocation context. In all, our method is much

Figure 5. Experimental results of execution time (baseline is native exe-
cution, Pre is previous state-of-the-art work, and DDPE is our work)



592 Z. YANG

Figure 6. Experimental results of memory usage (baseline is native exe-
cution, Pre is previous state-of-the-art work, and DDPE is our work)

more efficient than previous state-of-the-art work on allocation intensive benchmarks and
we consume less physical memory.

5. Conclusions. This paper introduces a high-efficient dangling pointer detector. Based
on page fault mechanism and our key findings that objects allocated in the same context
are likely to be freed together, we introduced a new heap design and a page fault handler
that we can track all dangling pointer error very efficiently. Compared with previous state-
of-the-art work (introduces up to 21X overhead on allocation intensive benchmarks), our
detector introduces very small runtime overhead (within 34%) and shows great potential to
be adopted in real production environment. Future work includes optimizing the memory
allocator to better sever multi-threading.

REFERENCES

[1] D. Dinakar and V. Adve, Efficiently detecting all dangling pointer uses in production servers, Inter-
national Conference on Dependable Systems and Networks (DSN’06), 2006.

[2] Y. Younan, FreeSentry: Protecting against use-after-free vulnerabilities due to dangling pointers,
Network and Distributed System Security Symposium, 2015.

[3] B. Lee et al., Preventing use-after-free with dangling pointers nullification, Network and Distributed
System Security Symposium, 2015.

[4] N. Nethercote and J. Seward, Valgrind: A framework for heavyweight dynamic binary instrumenta-
tion, ACM SIGPLAN Notices, vol.42, no.6, 2007.

[5] D. Bruening, Q. Zhao and S. Amarasinghe, Transparent dynamic instrumentation, ACM SIGPLAN
Notices, vol.47, no.7, pp.133-144, 2012.

[6] T. Iskhodzhanov, R. Kleckner and E. Stepanov, Combining compile-time and run-time instrumen-
tation for testing tools, Programmnye Produkty I Sistemy, vol.3, pp.224-231, 2013.

[7] E. Berger et al., Hoard: A scalable memory allocator for multithreaded applications, ACM SIGPLAN
Notices, vol.35, no.11, pp.117-128, 2000.

[8] B. Hawkins et al., Optimizing binary translation of dynamically generated code, Proc. of the 13th
Annual IEEE/ACM International Symposium on Code Generation and Optimization, 2015.

[9] J. Zhao et al., Formal verification of SSA-based optimizations for LLVM, ACM SIGPLAN Notices,
vol.48, no.6, pp.175-186, 2013.

[10] C. Lattner and V. Adve, The LLVM compiler framework and infrastructure tutorial, International
Workshop on Languages and Compilers for Parallel Computing, Springer Berlin Heidelberg, 2004.

[11] D. E. Berger, B. G. Zorn and K. S. Mckinley, Composing high-performance memory allocators, ACM
SIGPLAN Notices, vol.36, no.5, pp.114-124, 2001.

[12] D. E. Berger, B. G. Zorn and K. S. Mckinley, OOPSLA 2002: Reconsidering custom memory allo-
cation, ACM SIGPLAN Notices, vol.48, no.4S, pp.46-57, 2013.


