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Abstract. In this study, the lifetime of the product has the exponentiated Weibull dis-
tribution with the three parameters (γ, β, λ). Next, we design three computational algo-
rithms for the method of D-optimality p-order quantile estimator, and survival function
to determine the optimum solutions of the number of testing group (n) and the number
of test in group (k) under the progressive first-failure censoring plan with restrictions
relating to the cost of the life testing, respectively. Finally, one numerical example and
sensitivity analysis are taken into consideration to illustrate the proposed approach.
Keywords: Exponentiated Weibull distribution, Progressive first-failure censoring plan,
Maximum likelihood estimator, The cost of the life testing, Sensitivity analysis

1. Introduction. Suppose that m is the number of failures observed before termination
and n independent groups with k items within each group are put in a life test. r̃1 groups
and the group in which the first failure is observed are randomly removed from the test
as soon as the first failure (say X1) has occurred, r̃2 groups and the group in which the
second failure is observed are randomly removed from the test as soon as the second
failure (say X2) has occurred, and finally r̃m (m ≤ n) groups and the group in which the
mth failure is observed are randomly removed from the test as soon as the mth failure
(say Xm) has occurred. Then X1 < X2 < · · · < Xm are called the progressive first-failure
censored order statistics with censoring scheme r̃ = (r̃1, r̃2, · · · , r̃m) (also see [1]).

The exponentiated Weibull distribution with the probability density function (p.d.f.)
f(x) and the cumulative distribution function (c.d.f.) F (x) are as follows respectively:

f(x) =
γβ

λ

[
1 − exp

(
− (x/λ)β

)]γ−1

exp
(
− (x/λ)β

)
(x/λ)β−1 , (1)

and

F (x) =
[
1 − exp

(
− (x/λ)β

)]γ
, x > 0, γ > 0, β > 0, λ > 0, (2)

where the shape of the exponentiated Weibull distribution is determined by the shape
parameters γ and β. The effect of the scale parameter λ is to only stretch out the plot.
Thus, the shape parameters γ and β are more important than the scale parameter λ (also
see [2]). Hence, in this paper, let λ = λ0 be the known (or fixed) scale parameter.

In the design of reliability sampling plans with progressive first-failure censored data,
one needs to decide the number of groups, the number of test units in each group, and
the critical point. One practical problem arising from designing a reliability sampling
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plan is the cost of the experiment. However, in the literature, many related researchers
[3-5] considered the cost restriction when designing sampling plans. Wu and Huang [4]
proposed an approach to establishing reliability sampling plans which minimize three
different objective functions under the constraint of total cost of experiment and given
consumer’s and producer’s risks. Attia and Assar [3] proposed optimal progressive group-
censoring plans for Weibull distribution in presence of cost constraint with the unknown
shape parameter β and the known scale parameter λ. Lee et al. [5] designed an optimal life
test based on the progressive type I group censoring plan under the Weibull distribution.
The purpose of this study is to explore the optimal number of groups and the optimal
number of test units in each group in conducting a reliability sampling plan. In this
study, the lifetime of the product has the exponentiated Weibull distribution with the
three parameters (γ, β, λ). The shape parameters γ and β are more important than the
scale parameter λ in the exponentiated Weibull distribution. Hence the present study
proposes a ‘shape-first’ fitting approach to fit the shape parameters γ and β under the
fixed scale parameter λ. We design three computational algorithms for the method of D-
optimality, p-order quantile estimator, and survival function to determine the optimum
solutions of the number of testing group (n) and the number of test in group (k) under
the progressive first-failure censoring plan with restrictions relating to the cost of the life
testing, respectively. This study is organized as follows. Section 2 presents the maximum
likelihood estimator of the parameters of exponentiated Weibull distribution with the
progressively first-failure censoring plan. Section 3 presents the estimated asymptotic
variance matrix of maximum likelihood estimators with the method of D-optimality, the
estimated asymptotic variance of p-order quantile estimator, and the estimated asymptotic
variance of survival function estimator. Section 4 studies the design of reliability sampling
plans to determine the number of groups and the number of test units in each group, and
then sets up a reliability sampling plan with cost consideration. Section 5 applies the
proposed approach to one numerical example. The sensitivity analysis is investigated in
Section 6. Some conclusions and discussions are given in Section 7.

2. The Maximum Likelihood Estimator of the Parameters. Let X denote the
lifetime of a product and X has an exponentiated Weibull distribution with the p.d.f. f(x)
as (1) and c.d.f. F (x) as (2). X1, X2, · · · , Xm are the progressive first-failure censored
order statistics from the exponentiated Weibull distribution with censoring scheme r̃ =
(r̃1, r̃2, · · · , r̃m). The likelihood function is

L̃(γ, β, λ) = c · km

m∏
i=1

{
γβλ−1

(
h̃i

)γ−1 (
1 − h̃i

)
(xi/λ)β−1

[
1 − h̃γ

i

]k(r̃i+1)−1
}

, (3)

where c = n (n − r̃1 − 1) (n − r̃1 − r̃2 − 2) · · · (n − r̃1 − r̃2 − · · · − r̃m−1 − m + 1), h̃i =

1 − exp
(
− (xi/λ)β

)
.

The differentiation of the log-likelihood function ln L̃(γ, β, λ) with respect to γ, β and
λ yields

∂ ln L̃(γ, β, λ)

∂γ
=

m

γ
+

m∑
i=1

ln h̃i −
m∑

i=1

{
[k(r̃i + 1) − 1]

(
h̃γ

i · ln h̃i

1 − h̃γ
i

)}
, (4)

∂ ln L̃(γ, β, λ)

∂β
=

m

β
+ (γ − 1)

m∑
i=1

(
1

h̃i

∂h̃i

∂β

)
−

m∑
i=1

(
1

1 − h̃i

∂h̃i

∂β

)
+

m∑
i=1

ln (xi) − m ln λ

−
m∑

i=1

{
[k(r̃i + 1) − 1]

(
γh̃γ−1

i

1 − h̃γ
i

∂h̃i

∂β

)}
, (5)
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and

∂ ln L̃(γ, β, λ)

∂λ
= (γ − 1)

m∑
i=1

(
1

h̃i

· ∂h̃i

∂λ

)
+

β

λβ+1

m∑
i=1

(
xβ

i

)
− mβ

λ

−
m∑

i=1

{
[k(r̃i + 1) − 1]

(
γh̃γ−1

i

1 − h̃γ
i

∂h̃i

∂λ

)}
, (6)

where ∂h̃i

∂β
= (xi/λ)β ln (xi/λ) exp

(
− (xi/λ)β

)
and ∂h̃i

∂λ
= −βxβ

i λ−β−1 exp
(
− (xi/λ)β

)
.

The maximum likelihood estimators γ̂, β̂ and λ̂ can be derived by solving the nonlinear

equations ∂ ln L̃(γ,β,λ)
∂γ

= 0, ∂ ln L̃(γ,β,λ)
∂β

= 0 and ∂ ln L̃(γ,β,λ)
∂λ

= 0 with Compaq Visual Fortran

version 6.6 [6] and IMSL subroutine NEQNF.

3. The Estimated Asymptotic Variance of Estimators. The estimated asymptotic
covariance matrix I−1(γ̂, β̂) of the maximum likelihood estimators γ̂ and β̂, the estimated
asymptotic variance of p-order quantile estimator, and the estimated asymptotic variance
of survival function estimator can be obtained in large sample theory under the unknown
shape parameters γ, β and the fixed scale parameter λ = λ0 with λ0 being known.

By the log-likelihood function ln L̃(γ, β, λ), and the fixed scale parameter λ = λ0 with
λ0 being known, we have

∂2 ln L̃(γ, β, λ0)

∂γ2
=

−m

γ2
−

m∑
i=1

{
[k(r̃i + 1) − 1]

[
h̃γ

i

(
ln h̃i

)2 (
1 − h̃γ

i

)
+
(
h̃γ

i ln h̃i

)2
](

1 − h̃γ
i

)−2
}

. (7)

∂2 ln L̃(γ, β, λ0)

∂β2
= −m

β2
+ (γ − 1)

m∑
i=1

[
−1

h̃2
i

(
∂h̃i

∂β

)2

+
1

h̃i

∂2h̃i

∂β2

]

−
m∑

i=1

∂2h̃i

∂β2

(
1 − h̃i

)
+

(
∂h̃i

∂β

)2
(1 − h̃γ

i

)−2


−

m∑
i=1

{
[k(r̃i + 1) − 1]

[[
γ(γ − 1)h̃γ−2

i

∂h̃i

∂β

(
1 − h̃γ

i

)
+γ2

(
h̃γ−1

i

)2 ∂h̃i

∂β

](
1 − h̃γ

i

)−2

· ∂h̃i

∂β
+

(
γh̃γ−1

i

1 − h̃γ
i

· ∂2h̃i

∂β2

)]}
, (8)

and

∂2 ln L̃ (γ, β, λ0)

∂γ∂β
=

m∑
i=1

1

h̃i

∂h̃i

∂β
−

m∑
i=1

[k(r̃i + 1) − 1]


γh̃γ−1

i

∂h̃i

∂β
ln h̃i + h̃γ

i

1

h̃i

∂h̃i

∂β(
1 − h̃γ

i

)

+

h̃γ
i ln h̃i · γ · h̃γ−1

i

∂h̃i

∂β(
1 − h̃γ

i

)2


 , (9)
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where ∂h̃i

∂β
as the above definition and

∂2h̃i

∂β2
=

(
ln

(
xi

λ0

))2(
xi

λ0

)β

exp

(
−
(

xi

λ0

)β
)[

1 −
(

xi

λ0

)β
]

.

Under some mild regularity conditions (see Theorem 5.2.2 of Sen and Singer [7]), (γ̂, β̂)
is asymptotically bivariately normal distribution with mean (γ, β) and covariance matrix

I−1(γ, β), i.e., (γ̂, β̂)
D−→ N((γ, β), I−1(γ, β)) and the estimated asymptotic covariance

matrix of (γ̂, β̂) is

I−1(γ̂, β̂) =


E

(
−∂2 ln L̃(γ, β, λ0)

∂γ2

)
E

(
−∂2 ln L̃(γ, β, λ0)

∂γ ∂β

)

E

(
−∂2 ln L̃(γ, β, λ0)

∂γ ∂β

)
E

(
−∂2 ln L̃(γ, β, λ0)

∂β2

)


−1
∣∣∣∣∣∣∣∣∣∣∣
(γ,β)=(γ̂,β̂)

, (10)

where I−1
(
γ̂, β̂

)
can be calculated by numerical integration with Compaq Visual Fortran

version 6.6 [6] and IMSL subroutines QDAGI and QDAGS.

By the p-order quantile xp = F−1(p) = h1(γ, β) = λ0

[
− ln

(
1 − p1/γ

)]1/β
, 0 < p < 1,

and the delta method (see Theorem 5.5.28 of Casella and Berger [8]), we have the p-

order quantile estimator h1

(
γ̂, β̂

)
D−→ N(h1(γ, β), AV ar(h1(γ, β))), and the estimated

asymptotic variance of the p-order quantile estimator h1

(
γ̂, β̂

)
is

AVar
(
h1

(
γ̂, β̂

))
= H1

∣∣∣(γ,β)=(γ̂,β̂) · I−1
(
γ̂, β̂

)
· HT

1

∣∣∣(γ,β)=(γ̂,β̂) , (11)

where

H1 =

(
∂h1 (γ, β)

∂γ
,
∂h1 (γ, β)

∂β

)
,

∂h1 (γ, β)

∂γ
=

λo

β

[
− ln

(
1 − p1/γ

)] 1−β
β
[
−(1 − p1/γ)

] (
−p1/γ ln p

)
(−γ−2) ,

∂h1 (γ, β)

∂β
= λo

[
− ln

(
1 − p1/γ

)]1/β
ln
[
− ln

(
1 − p1/γ

)]
(−β−2)

and by (10), I−1(γ̂, β̂) can be calculated by numerical integration with Compaq Visual
Fortran version 6.6 [6] and IMSL subroutines QDAGI and QDAGS.

By the survival function S (x) = h2 (γ, β) = 1 −
[
1 − exp

(
− (x/λ0)

β
)]γ

and the delta

method (see Theorem 5.5.28 of Casella and Berger [8]), we have survival function estimator

h2

(
γ̂, β̂

)
D−→ N (h2 (γ, β) , AV ar (h2 (γ, β))), and the estimated asymptotic variance of

the survival function estimator h2

(
γ̂, β̂

)
is

AVar
(
h2

(
γ̂, β̂

))
= H2

∣∣∣(γ,β)=(γ̂,β̂) · I−1
(
γ̂, β̂

)
· HT

2

∣∣∣(γ,β)=(γ̂,β̂) , (12)

where

H2 =

(
∂h2 (γ, β)

∂γ
,
∂h2 (γ, β)

∂β

)
,

∂h2 (γ, β)

∂γ
= −

[
1 − exp

(
−
(

x

λo

)β
)]γ

ln

[
1 − exp

(
−
(

x

λo

)β
)]

,

∂h2 (γ, β)

∂β
= −γ

[
1 − exp

(
− (x/λ0)

β
)]γ−1

(x/λ0)
β ln (x/λ0) exp

(
− (x/λ0)

β
)
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and by (10), I−1(γ̂, β̂) can be calculated by numerical integration with Compaq Visual
Fortran version 6.6 [6] and IMSL subroutines QDAGI and QDAGS.

4. Planning of Life Test with Cost Constraint. We assume that the proportion
to be removed at the time of the ith failure, qi, is pre-determined (0 ≤ qi < 1) and
the number of removed groups can be computed as r̃i = nqi, i = 1, 2, · · · ,m. Thus, a
progressive first-failure censored variables sampling can be described by the number of
groups n, the number of test units k in each group, and the proportions to be removed
q1, q2, · · · , qm. The fixed cost has the installation cost Ca, the variable costs have the
sample cost Cs, the total operation cost Co and the budget of a life test CT . Therefore,
the total expected cost of the experiment is

TC (n, k) = Ca + nkCs + E (Xm) Co ≤ CT , (13)

where N = nk, F (x) =
[
1 − exp

(
− (x/λ)β

)]γ
, E(Xm) is the expected duration of the

life test,

E (Xm) =

∫ ∞

0


(

m∏
i=1

ũi

)
·

m∑
i=1

ũ−1
i

 m∏
j=1
j ̸=i

(ũj − ũi)
−1

 [1 − F (x)]ũi


dx,


ũi = N − i + 1 +

m∑
j=i

(k (r̃j + 1) − 1)

ũj = N − j + 1 +
m∑

l=j

(k (r̃l + 1) − 1)
.

We investigate three selection criteria which enable one to choose the optimal value
of (n, k), as follows: (i) Minimize the determinant of the estimated asymptotic variance-
covariance matrix of maximum likelihood estimators, and thus, the first criterion function

can be constructed by (10) as G1(n, k) = det
(
I−1

(
γ̂, β̂

))
; (ii) Minimize the estimated

asymptotic variance of p-order quantile estimator, and thus, the second criterion function

can be constructed by (11) as G2(n, k) = AVar
(
h1

(
γ̂, β̂

))
; (iii) Minimize the estimated

asymptotic variance of survival function estimator, and thus, the third criterion function

can be constructed by (12) as G3(n, k) = AVar
(
h2

(
γ̂, β̂

))
.

The optimal design of sampling plan can be expressed with the criterion functions
Gi(n, k), i = 1, 2, 3, as follows respectively:

Min Gi (n, k) , ∃i ∈ {1, 2, 3}

Subject to TC (n, k) = Ca + nkCs + E (Xm) Co ≤ CT , n, k ∈ Z+. (14)

The progressive first-failure censored variables sampling plan can be described by n,
k and (q1, q2, · · · , qm). We may first fix the degree of censoring q (0 < q < 1) and then
select the values of q1, q2, · · · , qj, qj′ , · · · , qm such that q1 + q2 + · · ·+ qj + qj′ + · · ·+ qm = q
(see Balasooriya et al. [9]). Let m1 denote the total number of selected qi′s, the smallest
number of groups to get m1 observed failures has to satisfy n ≥ m1/(1 − q). Let m2 be
the smallest number of removed groups, the smallest number of groups to get m2 removed
groups has to satisfy n ≥ m2/q. So we have n ≥ max {m1/(1 − q),m2/q}. By (14), we
have Ca + nkCs + E (Xm) Co ≤ CT . Because of the expected duration of the life test
E(Xm) > 0, Ca + nkCs 5 CT , hence k ≤ (CT − Ca)/(nCs). n has the lower bound
n′ = max ([m1/(1 − q)] , [m2/q]), where the symbol [x] denotes the largest integer which
is ≤ x. So we can obtain the upper bound of k is k′ = [(CT − Ca)/(n

′Cs)].
Finally, the optimal solution of (14) can be obtained by an enumeration method. The

algorithm included two parts (a) and (b), and the algorithm is stated as follows.
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(a) The estimation of the parameters γ, β and λ:
Step a-1: Input n, k, m, {xi, i = 1, · · · ,m} and (r̃1, r̃2, · · · , r̃m), where n is the num-

ber of groups, k is the number of test units in each group, m is the number of failures
observed before termination, {xi, i = 1, · · · ,m} is the progressive first-failure censored
order statistics data, and (r̃1, r̃2, · · · , r̃m) is the censoring scheme. Step a-2: The maxi-

mum likelihood estimators γ̂, β̂ and λ̂ are derived by solving the equations ∂ ln L̃(γ,β,λ)
∂γ

= 0,
∂ ln L̃(γ,β,λ)

∂β
= 0 and ∂ ln L̃(γ,β,λ)

∂λ
= 0 with Compaq Visual Fortran version 6.6 [6] and IMSL

subroutine NEQNF.
(b) The solution (n, k) of the nonlinear programming with (14):
Step b-1: Input the values of cost parameters (CT , Co, Ca, Cs), the specified propor-

tions of removals (q1, q2, · · · , qj, qj′ , · · · , qm), the smallest number of observed failures m1,

the smallest number of removed groups m2, and the maximum likelihood estimators (γ̂, β̂,

λ̂), where CT is the budget of a life test, Ca is installation cost, Co is the operation cost
for each time unit, and Cs is sample cost. Step b-2: Calculate the lower bound of n and
the upper bound of k. The lower bound of n is n′ = max ([m1/(1 − q)] , [m2/q]), where
q = q1 + q2 + · · · + qj + qj′ + · · · + qm is the degree of censoring, and the symbol [x] de-
notes the largest integer which is ≤ x. The upper bound of k is k′ = [(CT − Ca)/(n

′Cs)]
Step b-3: Set k = 1. Step b-4: Set nk = n′ + 1. Step b-5: Compute G (n∗

k, k) =
min

A
{G (nk − 1, k) , G (nk, k)}, A = {TC (nk − 1, k) ≤ CT}∪{TC (nk, k) ≤ CT}, and λ0 =

λ̂. Step b-6: Set k = k + 1, if k ≤ k′, go to Step b-4; else go to Step b-7. Step b-7:

Calculate the minimum value of the criterion function G(n, k). That is, G
(
ñ, k̃
)

=

min
{1≤k≤k′}

{G (n∗
k, k)}. Step b-8: The optimal design

(
ñ, k̃
)

is obtained.

5. Numerical Example. Nelson [10] presents the results of a life-test experiment in
which specimens of a type of electrical insulating fluid were subject to a constant volt-
age stress. The length of time until each specimen failed (or brokedown) was observed.
The vector of observed failure times and the progressive first-failure censoring scheme
are given as follow: {xi, i = 1, · · · , 8} = (0.19, 0.78, 0.96, 1.31, 2.78, 4.85, 6.50, 7.35), r̃ =
(0, 0, 3, 0, 3, 0, 0, 5), n = 19, m = 8 and k = 1. Then, the optimal solution of (14) is as
follows.

(i) The estimation of the parameters γ, β and λ.

By solving the equations ∂ ln L̃(γ,β,λ)
∂γ

= 0, ∂ ln L̃(γ,β,λ)
∂β

= 0 and ∂ ln L̃(γ,β,λ)
∂λ

= 0, we can attain

the maximum likelihood estimates are γ̂ = 0.7708132, β̂ = 1.223805 and λ̂ = 8.820102.
Here, we fixed λ0 = 8.820102.

(ii) The solution (n, k) of the nonlinear programming with (14).
Input the values of cost parameters CT = 120, Co = 10, Ca = 40, Cs = 1, the

specified proportions of removals q3 = 3/19, q5 = 3/19, q8 = 5/19, the smallest number of
observed failures m1 = 3, the smallest number of removed groups m2 = [(3/19 + 3/19 +
5/19)/(3/19)] = 3. The lower bound of n is n′ = max([3/(1 − 11/19)], [3/(11/19)]) = 7.
The upper bound of k is k′ = [(CT − Ca)/(n

′Cs)] = [(120 − 40)/(7 × 1)] = 11. Table
1 shows the optimal solution of (n, k) under the three criterion functions with p = 0.5.
The optimal solution of (n, k) is (7, 11) under the three criterion functions. The optimal
solution of the first criterion function G1(n, k) is 2.893 × 10−4, and it is best of the three
criterion functions.

6. Sensitivity Analysis. The sensitivity study of the optimal solution to change in the
values of the different parameters is an important issue to the planning of lifetime test.
In numerical example, we attained the maximum likelihood estimates γ̂ = 0.7708132,
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Table 1. The optimal solution of (n, k) under the three criterion functions

The criterion
function

The optimal
solution ñ of n

The optimal

solution k̃ of k
The optimal solution of
the criterion function

G1(n, k) 7 11 2.893 × 10−4

G2(n, k) 7 11 0.35002
G3(n, k) 7 11 1452 × 103

β̂ = 1.223805 and λ̂ = 8.820102, respectively, and fixed the values of cost parameters
CT = 120, Co = 10, Ca = 40, Cs = 1. Using the same estimates of distribution param-
eters γ̂ = 0.7708132, β̂ = 1.223805 and λ0 = 8.820102, the influence of cost parameters
(CT , Co, Ca, Cs) on n, k and Gi(n, k), i = 1, 2, 3. We investigated the effects of the param-
eters of experimental cost (CT , Co, Ca, Cs) on n, k and Gi(n, k), i = 1, 2, 3 as follows: (i)

ñ is constant, k̃ is increasing and Gi

(
ñ, k̃
)

is decreasing, as CT increases. (ii) ñ is con-

stant, k̃ is decreasing and Gi

(
ñ, k̃
)

is increasing, as Cs increases. (iii) ñ is constant, k̃ is

constant and Gi

(
ñ, k̃
)

is constant, as Co increases. (iv) ñ is constant, k̃ is decreasing and

Gi

(
ñ, k̃
)

is increasing, as Ca increases. (v) ñ is constant, k̃ and Gi

(
ñ, k̃
)

are negative

correlation, as (CT , Ca, Cs) increase. (vi) Gi

(
ñ, k̃
)

is increasing, as (Ca, Cs) increase. By

(i)-(vi), Gi

(
ñ, k̃
)

is sensitive to changes in CT , Ca and Cs, but Gi

(
ñ, k̃
)

is insensitive

to changes in Co. We can find that the choice of the values of CT , Ca and Cs is important

to Gi

(
ñ, k̃
)
.

7. Conclusions. In this paper, we use the method of D-optimality, p-order quantile
estimator, and survival function to determine the optimum solutions of the number of
testing group (n) and the number of test in group (k) under the progressive first-failure
censoring plan for the exponentiated Weibull products with restrictions relating to the cost
of the life testing, respectively. The decision problem of obtaining the number of testing
group (n) and the number of test in group (k) under restricted budget of experiment
is important for experimenters. The simulation results indicate that the choice of the
values of cost parameters is important. The proposed approach not only helps us to make
decision in product management, but also provides the most efficient use of experimenter’s
resources. In future research on this optimal decision problem, it would be interesting to
deal with the objective function and the total cost of constraint based on progressive type
I group censoring sample.
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