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Abstract. The augmented Lagrangian multiplier method (ALM) is a highly influential
method for optimization problems, and it has been successfully applied in various fields,
such as compressive sensing, matrix completion, and image recovery. However, its effi-
ciency is dominated by how to efficiently solve the involved subproblem, which is often
as hard as the original problem. In this paper, we propose an accelerated ALM (AALM)
for a linearly constrained convex optimization, which incorporates two accelerating skills
to make our AALM implementable for most optimization problems in practice. Under
mild conditions, the global convergence of the new AALM is proved. Furthermore, we
also extend the new AALM to solve the similar problem but with the linear inequality
constraints. Some preliminary numerical experiments on image reconstruction are per-
formed to show the improvements of the new method.
Keywords: Augmented Lagrangian multiplier method, Accelerating skill, Global con-
vergence, Image reconstruction

1. Introduction. In this paper, we consider a special but quite useful convex optimiza-
tion, that is the linearly constrained convex optimization, which is to solve

min{f(x)|Ax = b, x ∈ X}, (1)

where A ∈ Rm×n, b ∈ Rm, X ⊆ Rn is a closed convex set and f(x) : Rn → R is a proper
convex function. The solution set of (1), denoted by X ∗, is assumed to be nonempty and
compact. Problem (1) is the mathematical model of many important problems arising
from machine learning, statistical inference, image processing, and sparse signals recovery,
see [1,2] and reference therein.

Let β > 0 be a given penalty parameter. The augmented Lagrangian function of
problem (1) is defined by, for any x ∈ X ,

Lβ(x, λ) := f(x) − ⟨λ,Ax − b⟩ +
β

2
∥Ax − b∥2,

where λ ∈ Rm is the dual variable of (1). A benchmark solver for (1) is the augmented
Lagrangian multiplier method (ALM) (see [2-7] for the development of ALM). Given λk,
ALM takes the following scheme for k = 0, 1, . . .,{

xk+1 ∈ argminx∈X
{
Lβ(x, λk)

}
,

λk+1 = λk − β
(
Axk+1 − b

)
.

(2)

At each iteration, the computation of ALM for (2) is dominated by solving the following
subproblem:

min

{
f(x) +

β

2
∥Ax − a∥2|x ∈ X

}
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with a certain known a ∈ Rm. Obviously, the above problem is often difficult compared
with the following problem:

min

{
f(x) +

β

2
∥x − a∥2|x ∈ X

}
.

In fact, as stated in [5], when X = Rm, the above subproblem is just the resolvent operator

of f(x), which is defined as
(
I + 1

β
∂f

)−1

(a). Here, ∂f(x) denotes the subdifferential of

a convex but nonsmooth function f at the point x, which is defined by

∂f(x) = {ξ|f(y) − f(x) ≥ ⟨ξ, y − x⟩, ∀y ∈ Rn} .

Fortunately, the resolvent operator of f(x) in many practical applications often has closed
form solution, such as

xk+1 = shrink1,2(a, 1/β)
.
= sign(a) · max{0, |a| − 1/β}, for f(x) = ∥x∥1,

or
xk+1 = shrink2,2(a, 1/β)

.
=

a

∥a∥
· max{0, ∥a∥ − 1/β}, for f(x) = ∥x∥,

where sign(·) is the sign function.
In this paper, we further study the ALM and propose a new accelerated ALM (AALM)

which adopts two acceleration skills. First, a variable regularization term is added to
the subproblem of (2) to linearize the quadratic term 1

2
∥Ax − b∥2, and this procedure

often makes that the resulting subproblem has closed form solution in many practical
applications. Then the computational load of the corresponding method is greatly reduced
at each iteration; Second, we use an extrapolating step in the primal and dual variables
(x, λ), which includes a problem-depending parameter τ ∈ (0, 2), and τ > 1 often leads
to better convergence behavior. Thus, we can choose some proper τ to accelerate the
convergence speed of AALM. It is noteworthy that by setting different parameters, our
new AALM includes the famous customized proximal point algorithm [9], the linearized
augmented Lagrangian method [10], and the Bregman operator splitting algorithm [11]
as special cases.

The outline of this paper is as follows. In Section 2, we review some preliminaries and
deliver our proposed method. In Section 3, we analyze the global convergence of the new
method. The extension of the new method is also presented in the section. In Section 4,
we report some numerical results on image reconstruction to verify the efficiency of the
new AALM. Some conclusions are drawn in Section 5.

2. Preliminaries and the Algorithm. Firstly, we characterize the optimal condition
of (1) as a variational reformulation, which makes our analysis quite succinct. Obviously,
the first-order optimality condition of (1) is: Finding a vector w∗ ∈ W such that

f(x) − f(x∗) + (w − w∗)⊤F (w∗) ≥ 0, ∀w ∈ W , (3)

where W = X ×Rl, and

w =

(
x
λ

)
and F (w) =

(
−A⊤λ
Ax − b

)
. (4)

Obviously, the mapping F (w) defined in (4) is affine with a skew-symmetric matrix; it is
easily verified that F (w) is monotone. We denote by W∗ the solution set of (3), which is
nonempty under the aforementioned assumption of the solution set X ∗ of (1).

In [12], by introducing a free parameter t ∈ (−∞, +∞), Ma and Ni proposed the
following customized ALM:{

xk+1 ∈ argminx∈X

{
f(x) + r

2

∥∥x − xk − 1
r
A⊤ (

λk − 1
s
(1 − t)(Axk − b)

) ∥∥2
}

,

λk+1 = λk − 1
s

(
(1 + t)Axk+1 − tAxk − b

)
,

(5)
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where r > 0, s > 0, rs > ∥A⊤A∥. Obviously, the subproblem in (5) only needs to solve
the resolvent operator of f(x).

Based on (5), we describe our accelerated ALM as follows.
Algorithm 2.1. (Accelerated ALM)
Step 0. Given any initial point (x0, λ0) ∈ W , the parameters r > 0, s > 0 satisfying

rs > ∥A⊤A∥, and t ∈ (−∞, +∞), τ ∈ (0, 2). Set k = 0.

Step 1. Compute the temporary point w̃k =
(
x̃k, λ̃k

)
by{

x̃k ∈ argminx∈X

{
f(x) + r

2

∥∥x − xk − 1
r
A⊤ (

λk − 1
s
(1 − t)(Axk − b)

) ∥∥2
}

,

λ̃k = λk − 1
s

(
(1 + t)Ax̃k − tAxk − b

)
,

(6)

Step 2. If wk = w̃k, then stop; otherwise, go to Step 3.
Step 3. Compute the new iterate wk+1 =

(
xk+1, λk+1

)
by

wk+1 = wk − τ
(
wk − w̃k

)
. (7)

Set k := k + 1 and go to Step 1.

Remark 2.1. If τ = 1, Algorithm 2.1 reduces to the customized ALM in [12]. That is to
say, our new method includes the customized ALM in [12] as a special case. Then, from
[12], our new method also includes the methods in [9-11] as special cases.

Remark 2.2. If wk = w̃k, then wk ∈ W∗, i.e., it is a solution of (3), and xk is a solution
of (1). The reason is as follows. First, from the second equation of (6), xk = x̃k and

λk = λ̃k, we can get

Axk − b = 0. (8)

Note that the first equation of (6) is equivalent to the following subproblem: find x̃k ∈ X ,
such that

f(x′) − f
(
x̃k

)
+

(
x′ − x̃k

)⊤ {
−A⊤λ̃k +

(
rI +

1

s

(
t2 − 1

)
A⊤A

) (
x̃k − xk

)
+ tA⊤

(
λ̃k − λk

) }
≥ 0, ∀x′ ∈ X .

Therefore, when wk = w̃k, the above problem reduces to: find x̃k ∈ X , such that

f(x′) − f
(
xk

)
+

(
x′ − xk

)⊤ (
−A⊤λk

)
≥ 0, ∀x′ ∈ X . (9)

Then, from (3), (8) and (9), we have wk ∈ W∗.

In the numerical experiment, we can use ∥wk−w̃k∥ ≤ ε as the stopping criterion, where
ε > 0 is a prescribed sufficiently small parameter, such as ε = 10−4, 10−6.

3. Global Convergence and Extension. To prove the global convergence of Algorithm
2.1, we need to make the following matrix G to be positively definite:

G =

(
rI + 1

s

(
t2 − 1

)
A⊤A tA⊤

tA sI

)
.

Obviously, we only need to impose the following parameter condition:

r > 0, s > 0, rs > ∥A⊤A∥.
In fact, for any (x, λ) ̸= 0, we have

w⊤Gw = x⊤
(

rI +
1

s

(
t2 − 1

)
A⊤A

)
x + 2t(Ax)⊤λ + s∥λ∥2.

• If x = 0, then λ ̸= 0; therefore, w⊤Gw > 0;
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• If x ̸= 0, then

w⊤Gw ≥ r∥x∥2 +
1

s

(
t2 − 1

)
∥Ax∥2 − s∥λ∥2 − t2

s
∥Ax∥2 + s∥λ∥2

=

(
r − ∥A⊤A∥

s

)
∥x∥2

> 0,

where the first inequality follows from the Cauchy-Schwartz inequality, and the second
inequality follows from r > 0, s > 0, rs >

∥∥A⊤A
∥∥.

Then, by some simple manupulations, (6) can be rewritten as the following compact
form:

f(x′) − f
(
x̃k

)
+

⟨
w′ − w̃k, F

(
w̃k

)
− G

(
wk − w̃k

)⟩
≥ 0, ∀w′ ∈ W . (10)

Let w′ = w∗ in (10), we obtain

f(x∗) − f
(
x̃k

)
+

⟨
w∗ − w̃k, F

(
w̃k

)
− G

(
wk − w̃k

)⟩
≥ 0.

That is ⟨
w̃k − w∗, G

(
wk − w̃k

)⟩
≥ f

(
x̃k

)
− f

(
x∗) +

⟨
w̃k − w∗, F

(
w̃k

)⟩
≥ f

(
x̃k

)
− f

(
x∗) +

⟨
w̃k − w∗, F (w∗)

⟩
≥ 0,

(11)

where the second inequality follows from the monotonicity of F (·), and the third inequality
follows from w∗ ∈ W∗. Obviously, the result of (11) can be rewritten as⟨

wk − w∗, G
(
wk − w̃k

)⟩
≥

∥∥wk − w̃k
∥∥

G
, (12)

which indicates that −
(
wk − w̃k

)
is a descent direction of the merit function 1

2

∥∥w−w∗
∥∥2

G

at the point wk, which also indicates that our correction step (7) is reasonable.

Lemma 3.1. The sequence
{
wk

}
generated by Algorithm 2.1 satisfies∥∥wk+1 − w∗∥∥2

G
≤

∥∥wk − w∗∥∥2

G
− τ(2 − τ)

∥∥wk − w̃k
∥∥2

G
. (13)

Proof: By (12), we have∥∥wk+1 − w∗∥∥
G

=
∥∥wk − τ

(
wk − w̃k

)
− w∗∥∥

G

=
∥∥wk − w∗∥∥

G
− 2τ

⟨
wk − w∗, G

(
wk − w̃k

)⟩
+ τ 2

∥∥wk − w̃k
∥∥2

G

≤
∥∥wk − w∗∥∥

G
− τ(2 − τ)

∥∥wk − w̃k
∥∥2

G
,

which completes the proof of the lemma.

Theorem 3.1. The sequence
{
wk

}
generated by Algorithm 2.1 converges to a solution

point in W∗ globally.

Proof: From (13) and τ ∈ (0, 2), we can get∥∥wk+1 − w∗∥∥2

G
≤

∥∥wk − w∗∥∥2

G
.

Therefore,
{∥∥wk − w∗

∥∥2

G

}
is a descent sequence. Therefore,

{
wk

}
is a bounded sequence,

and it has at least one cluster point, saying ŵ, and there is a subsequence
{
wki

}
such

that
lim
i→∞

wki → ŵ.

Then, by (13) again, we have
∞∑

k=0

∥∥wk − w̃k
∥∥2

G
≤ 1

τ(2 − τ)

∥∥w0 − w∗∥∥
G
,
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which indicates that
lim
k→∞

∥∥wk − w̃k
∥∥ = 0.

Then, following the same analysis in Remark 2.2, we have

Ax̂ = b, and f(x′) − f (x̂) + (x′ − x̂)
⊤

(
−A⊤λ̂

)
≥ 0, ∀x′ ∈ X .

This shows that ŵ ∈ W∗. That is to say, ŵ is a solution of (3). Then the following proof
follows immediately from the results in [13]. We omit the detail for conciseness.

Now, let us extend Algorithm 2.1 to solve the inequality constrained convex optimiza-
tion problem:

min{f(x)|Ax ≥ b, x ∈ X}.
Similarly, by introducing a dual variable λ ∈ Rm

+ , we can transform the above problem
into an equivalent variational inequality with W = X ×Rm

+ . Then, based on Algorithm
2.1, we present the following algorithm for solving the above problem.

Algorithm 2.2.
Step 0. Given any initial point (x0, λ0) ∈ W , the parameters r > 0, s > 0 satisfying

rs > ∥A⊤A∥, and t ∈ (−∞, +∞), τ ∈ (0, 2). Set k = 0.

Step 1. Compute the temporary point w̃k =
(
x̃k, λ̃k

)
by{

x̃k ∈ argminx∈X

{
f(x) + r

2

∥∥x − xk − 1
r
A⊤ (

λk − 1
s
(1 − t)

(
Axk − b

)) ∥∥2
}

,

λ̃k = PRm

[
λk − 1

s

(
(1 + t)Ax̃k − tAxk − b

)]
,

Step 2. If wk = w̃k, then stop; otherwise, go to Step 3.
Step 3. Compute the new iterate wk+1 =

(
xk+1, λk+1

)
by

wk+1 = wk − τ
(
wk − w̃k

)
.

Set k := k + 1 and go to Step 1.

Theorem 3.2. The sequence {wk} generated by Algorithm 2.2 converges to a solution
point in W∗ globally.

4. Applications in Image Reconstruction. In this section, we apply Algorithm 2.1
to testing a concrete application of the model (1), that is image reconstruction problem,
and report the numerical results. All the codes were written by Matlab 7.10 and were
conducted on ThinkPad notebook with Pentium(R) Dual-Core CPU T4400@2.2GHz, 2GB
of memory.

Let x ∈ Rl represent a digital image with l = l1 × l2, and W ∈ Rl×n be a wavelet
dictionary. Set x = Wx with x being a spars vector. Then, the image reconstruction
problem is to recover the clear image x based on some observation b, and its mathematical
model is:

min{∥x∥1|BWx = b},
where B ∈ Rm×l is a diagonal matrix whose elements are either 0 (missing pixels) or 1
(known pixels), and B = SH, where S ∈ Rm×l is a downsampling matrix generated by
the following subroutines

dtx = 64; dty = 64; S1 = rand(dtx,dty)>0.6;

and
S2 = ones(n1/dtx,n2/dty); S = kron(S1,S2).

Furthermore, we set H = fspecial(‘disk’,7) ∈ Rl×l is a blurry matrix, and therefore
H can be diagonalized by the discrete consine transform. For the special B, W , we have
∥A⊤A∥ = 1. More information about the image reconstruction problem can be found in
[9,12].
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In our numerical experiment, we set r = 0.6, s = 1.5, t = 0, τ = 1.9 and the maximized
iteration number is set 300. The initial point is set to be (x0, λ0) =

(
W⊤(b), 0

)
. We test

512× 512 image of Lena.png, 256× 256 images of Chart.tiff and House.png for the image
reconstruction problem. To assess the restoration performance qualitatively, we use the
signal to noise ratio (SNR) defined as

SNR = 20log10

∥x∥
∥x̃ − x∥

.

Here x is the true image, and x̃ is the restored image.
The original images, the degraded images and the images restored by Algorithm 2.1 are

shown in Figure 1, and we also plot the evolutions of SNR with respect to the number of
iterations for Algorithm 2.1 in Figure 2. From Figures 1 and 2, it is clear that Algorithm
2.1 can recover the degraded images successfully. Therefore, Algorithm 2.1 is an efficient
method for the image reconstruction problem.

Figure 1. Original images, degraded images and restored images

Figure 2. Evolutions of SNRs with respect to the number of iterations
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5. Conclusions. In this paper, we have proposed an accelerated ALM method for the
linear equality constrained convex optimization, and extend it to solve the convex opti-
mization with the linear inequality constraints. The global convergence of the proposed
methods is proved under quite mild conditions, and some numerical results on image
reconstructions are presented, which indicate that our new method is quite efficient for
the tested problems. In the future, the following two problems need to research: (I) the
restriction rs > ∥A⊤A∥ imposed on the two parameters r, s is too stringent, and relaxing
or removing this restriction is quite meaningful; (II) the parameter τ is quite problem-
depending, and some adaptive scheme should be designed to choose proper τ for different
problems.
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