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Abstract. Kernel discriminant learning ordinal regression (KDLOR) is a method de-
signed to tackle the ordinal regression problems. However, it ignores the local structure
characteristics of the data and might provide undesired results. In this paper, we propose
a novel ordinal regression method called local discriminant analysis ordinal regression
(LDAOR). The proposed method explicitly incorporates both the local structure char-
acteristics and the discriminant information in the data space, and so achieves better
generalization performance over its counterparts. In the paper, we first discuss the linear
model of LDAOR and then develop its nonlinear version by using the representation the-
orem for reproducing kernel Hilbert spaces (RKHS). The experimental results on several
synthetic and benchmark datasets validate the effectiveness of LDAOR.
Keywords: Machine learning, Ordinal regression, Discriminant analysis, Local struc-
ture characteristic

1. Introduction. Machine learning often involves a type of problems in which ones want
to explore an order among different categories. It is referred to as ordinal regression
(OR). OR is actually a type of supervised learning problems [1-3]. In OR, the labels of
the data points are discrete and ordinal. Thus, it differs from the traditional regression
or classification problems. OR has been successfully applied in a wide range of machine
learning applications such as information retrieval [4], medical analysis [5], facial age
estimation [6], facial beauty assessment [7], image classification [8], and text classification
[9].

During the past decade, many methods have been designed to deal with the OR prob-
lems. In [10], Sun et al. extended the kernel discriminant analysis (KDA) algorithm to
handle the OR problems. This method is referred to as kernel discriminant learning ordi-
nal regression (KDLOR). KDLOR shows inspiring generalization ability in solving the OR
problems. However, if the data points in some categories are multimodal, then KDLOR
tends to provide undesired results. The reason is that KDLOR ignores the local structure
characteristic of the data. In [11], Liu et al. further extended the manifold learning idea
to deal with OR and proposed a method called ordinal regression method via manifold
learning (ORML). In contrast with KDLOR, this method further takes fully consideration
of the local structure characteristics of the data space. However, this method does not
explicitly utilize the discriminant information of the data in its objective function and so
is unsupervised. As a result, ORML sometimes gives some unreasonable results.

In this paper, we propose a novel ordinal regression learning method called local dis-
criminant analysis ordinal regression (LDAOR). In contrast with KDLOR, the model of
LDAOR incorporates the local structure characteristics of the data space. And it utilizes
the discriminant information in the training data but ORML does not. These are the key
differences between LDAOR and its counterparts. On the other hand, LDAOR is similar
to KDLOR and ORML in the form of the optimization problem, i.e., its optimization
problem is also a convex QP problem with linear constraints and many techniques can
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be employed to solve it. In the paper, we first formulate the linear model of LDAOR and
discuss how to solve it. Then, we develop its nonlinear version. The experimental results
indicate that KDLOR is effective and can achieve superior generalization performance
over its counterparts.

The rest of this paper is organized as follows. In Section 2, the linear model of LDAOR
is first formulated and how to solve it is then discussed. After that, the nonlinear version
of LDAOR is developed in Section 3. The experimental results are reported in Section 4.
Finally, conclusions are drawn in Section 5.

2. The Proposed Ordinal Regression Method. In this paper, we will address an
OR problem with C ordinal categories. The training data contains N data points and is
denoted by {(xi, yi)|xi ∈ Rd, yi ∈ {1, . . . , C}, i = 1, . . . , N}, where xi is the ith input
data point and yi represents its order. Here d is the dimension of the data space.

2.1. Constructing the locality within-class scatter matrix. In order to develop our
method, we first construct a matrix to capture the local structure characteristics of the
data. For the above given training data, we define a matrix as followsóSc =

X
xi∈Xc

X
xj∈Xc

Ac
ij(xi − xj)(xi − xj)

T (1)

where Xc = {xi|yi = c, i = 1, . . . , N c}, the matrix Ac is the affinity matrix constructed
to model the neighborhood relationship between the data points in the cth category and
we will detail how to construct it in Section 2.3. We refer to the above matrix óSc as
locality scatter matrix of the c-category data. Further, we define the following matrix

óSW =
CX

c=1

óSc (2)

We refer to the matrix as locality within-class scatter matrix. This matrix incorporates
the local structure characteristics of the data since it uses the locality scatter matrix
of each category. Moreover, it utilizes the discriminant information of the data and is
supervised.

2.2. Formulation of the proposed ordinal regression method. By following the
basic idea of KDLOR and using the above defined matrix óSW in (2), we define the primal
optimization problem of LDAOR as follows

min
w

wT óSWw − λρ

s.t. wT (uc+1 − uc) ≥ ρ, c = 1, 2, . . . , C − 1
(3)

where λ is a penalty parameter. As KDLOR, LDAOR tries to construct C−1 hyperplanes
wTx + bc = 0 which have the same direction w and different constraint thresholds bc

(c = 1, . . . , C). However, our method introduces the locality within-class scatter matrixóSW in the objective function instead of the within-class scatter matrix SW in KDLOR. In
this way, the local structure characteristics of the data are taken fully into consideration.
LDAOR also explicitly utilizes the discriminant information contained in the training data
since the used matrix óSW in its objective function is supervised, whereas OLML does not.

Figure 1 illustrates the differences between LDAOR and the other two methods. Here,
we consider a synthetic OR task with 3 ordered categories and each category of which
consists of 100 data points. Figure 1(a) shows the decision hyperplanes of KDLOR on the
data and Figure 1(b) illustrates ones generated by ORML. Figure 1(c) is the experimental
results of LDAOR. Obviously, the hyperplanes of LDAOR are more reasonable in contrast
with ones of LDAOR and ORML and they reflect the local characteristic of the data. This
example clearly demonstrates the limitations of KDLOR and ORML and the advantage
of LDAOR over them.
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(a) The decision hyperplanes of KDLOR (b) The decision hyperplanes of ORML

(c) The decision hyperplanes of LDAOR

Figure 1. The decision hyperplanes of KDLOR, ORML and LDAOR on
a synthetic data

Similarly to KDLOR, through using the duality theory [12], if the matrix SW is non-
singular or invertible, we can obtain the Wolf dual problem of (3) as follows

min
α

C−1X
c=1

αc(u
c+1 − uc)T óS−1

W

C−1X
c=1

αc(u
c+1 − uc)

s.t. 0 ≤ αc ≤ λ, c = 1, . . . , C − 1

C−1X
c=1

αc = λ

(4)

This is a convex QP problem and can be solved through the same technique as in KDLOR.
Suppose α∗ is the solution of the above optimization problem, w is obtained as follows

w = óS−1
W

C−1X
c=1

α∗
c(u

c+1 − uc) (5)

and so the discriminant function value for an unknown data point x is

f(x) = wTx =
C−1X
c=1

α∗
c(u

c+1 − uc)óS−1
W x (6)

Thus, the predictive ordinal decision function is given by

min arg
c
{c : f(x) < bc} (7)
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Here bc is the threshold and we employ the same strategy as in [10] to compute it, i.e.,

bc = wT (uc+1 − uc)
À
2 (8)

Note, in the practical applications, as in KDLOR, LDAOR may encounter the singu-
larity problem of óSW since its inverse matrix is needed when solving the problem. To
deal with this problem, ones can add a constant η > 0 to the diagonal elements of óSW

as óSW = óSW + ηI. Here I is an identity matrix. An appropriate value of η is generally
estimated through a cross-validation technique.

2.3. Discussion on constructing the affinity matrix. The affinity matrix Ac of the
c-category data models the neighborhood and there are two main ways to construct it.
In general, the matrix can be constructed as follows

Ac
ij =

¨
exp

�
− ∥ xc

i − xc
j ∥ /t

�
, if xc

i ∈ Nk(x
c
j) or xc

j ∈ Nk(x
c
i);

0, otherwise.
(9)

where xc
i is the ith data point of the c-category data, t is the heat kernel parameter,

and Nk(x
c
i) represents the k nearest neighbors of xc

i in the c-category data. This way
of defining the affinity matrix is used in spectral clustering [13] and locality preserving
projection (LPP) [14].

Another way to define the affinity matrix is

Ac
ij =

¨
1/N c, if xc

i ∈ Nk(x
c
j) or xc

j ∈ Nk(x
c
i);

0, otherwise.
(10)

This way does not use the heat kernel and so its parameter is avoided. This way was used
in local Fisher discriminant analysis (LFDA) [15].

2.4. Connection to other methods. First, if we defined the affinity matrix of the
c-category data as

Ac
ij =

¨
1/N c, if yi = yj = c
0, if yi ̸= yj

(11)

Then, the locality within-class scatter matrix óSW is reduced to the within-class scatter
matrix SW which is used in KDLOR. As a result, our method LDAOR is KDLOR. So, our
method can be viewed as a generalized version of KDLOR and further takes consideration
of the local structure characteristics of the data space.

On the other hand, the locality within-class scatter matrix can be formulated as

óSW =
CX

c=1

óSc =
1

2

NX
i=1

NX
j=1

Aij(xi − xj)(xi − xj)
T (12)

where

Aij =

¨
Ac

ij, if yi = yj = c
0, if yi ̸= yj

(13)

So, if we define the affinity matrix as

Aij =

¨
exp

�
− ∥ xi − xj ∥2

À
t
�
, if xi ∈ Nk(xj) or xj ∈ Nk(xi);

0, otherwise.
(14)

then our method is reduced to ORML. The main limitation of ORML is that it ignores the
discriminant information in its objective function. However, LDAOR explicitly utilizes
the discriminant information of the training data in its objective function.
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3. Extension to Nonlinear Case. In the nonlinear case, ones generally use the ker-
nelization trick [16] to map the data space into a high-dimensional feature space. In the
feature space, we define the optimization problem of KDLOR as

min
w

wT óSϕ
Ww − λρ

s.t. wT (uϕ
c+1 − uϕ

c ) ≥ ρ, c = 1, 2, . . . , C − 1
(15)

where uϕ
c is the mean vector in the feature space and óSϕ

W is the corresponding locality

within-class scatter matrix. Note, óSϕ
W can be further rewritten as

óSϕ
W =

1

2

NX
i=1

NX
j=1

Aij(ϕ(xi) − ϕ(xj))(ϕ(xi) − ϕ(xj))
T (16)

Here ϕ(x) denotes the data point in the feature space.
Further, according to the representation theorem [16], the vector w can be formulated

as w =
PN

i=1 aiϕ(xi) in reproducing kernel Hilbert spaces (RKHS). Here ai ∈ R. Thus,
the optimization problem (15) can be reformulated as

min
a

1
2
aT S̄Wa − λρ

s.t. aT (ūc+1 − ūc) ≥ ρ, c = 1, 2, . . . , C − 1
(17)

where S̄W is formulated as S̄W = 1
2

PN
i=1

PN
j=1 Aij(zi − zj)(zi − zj)

T , ūc = 1
Nj

PNj

i=1 zi,

and a = [a1, . . . , aN ]T . Here the vectors zi are defined as zi = [k(xi,x1), k(xi,x2), . . . ,
k(xi,xN)]T . Here k(xi,xj) = φT (xi)φ(xj) is a predefined kernel function. This is the final
formulation of the optimization problem of the nonlinear LDAOR. It should be noted that
the above optimization problem (17) actually is an optimization problem defined by linear
LDAOR since S̄W is the locality within-class scatter matrix of the data which consists of
zi (i = 1, . . . , N). Thus, according to the previous discussion about the linear LDAOR,
(17) can be efficiently solved.

Suppose a is the solution of the above optimization problem, the discriminant function
value for an unknown data point x is

f(x) = aTk (18)

where k = [k(x1,x), k(x2,x), . . . , k(xN ,x)]T . In the nonlinear case, the thresholds bc can
be determined by

bc = aT (ūc+1 − ūc)
À
2 (19)

Thus, the predictive ordinal decision function is given by using (7).

4. Experiments. In this section, we report the experimental results. First, we evaluate
its generalization performance on several benchmark datasets by comparing it with other
methods. Then, we test the proposed method on a real dataset.

4.1. Benchmark dataset. In order to evaluate the performance of LDAOR, we con-
ducted the experiments on several benchmark datasets, which were selected from [3] and
include Pyrimidines (74 data points with 27 attributes), Triazines (186 data points with
60 attributes), Wisconsin Breast Cancer (194 data points with 32 attributes), Machine
CPU (209 data points with 6 attributes), Auto MPG (392 data points with 7 attributes),
Boston Housing (506 data points with 13 attributes), Stocks Domain (950 data points
with 9 attributes) and Abalone (4177 data points with 8 attributes). For each dataset,
following the way in [3], we discretized the target values into five ordinal quantities using
equal-frequency binning. In each experiment, each dataset was randomly selected of 70%
to form the training data and the rest was used as the test data.

In the experiments, we adopted the Gaussian kernel, i.e., k(x,y) = exp(−γ ∥ x−y ∥2).
The kernel parameter γ and the penalty parameter λ were respectively determined by
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Table 1. Mean-absolute-error (MAE) on the selected benchmark datasets

Datasets KDLOR ORML LDAOR
Pyrimidines 0.4461±0.0382 0.4351±0.0194 0.4232±0.0215
Triazines 0.6874±0.0223 0.6901±0.0452 0.6697±0.0553

Wisconsin Breast Cancer 1.0243±0.0973 1.0114±0.0822 1.0007±0.0748
Machine CPU 0.1835±0.0318 0.1984±0.0251 0.1839±0.0219
Auto MPG 0.2522±0.0276 0.2565±0.0197 0.2502±0.0163

Boston Housing 0.2553±0.0332 0.2762±0.0231 0.2622±0.0412
Stocks Domain 0.1218±0.0167 0.2141±0.0325 0.1032±0.0311

Abalone 0.1935±0.0136 0.1917±0.0241 0.1706±0.0025

Table 2. Mean-zero-one-error (MZE) (%) on the selected benchmark datasets

Datasets KDLOR ORML LDAOR
Pyrimidines 41.34±4.21 40.34±4.21 38.34±4.21
Triazines 50.11±3.25 48.73±4.75 47.11±3.62

Wisconsin Breast Cancer 69.71±5.37 68.42±6.18 66.44±5.29
Machine CPU 16.53±2.72 18.18±3.06 16.53±3.43
Auto MPG 24.11±3.01 25.12±2.12 24.18±3.45

Boston Housing 22.33±2.89 24.11±3.52 22.96±3.27
Stocks Domain 13.79±1.67 12.36±1.24 11.54±2.81

Abalone 18.34±4.21 17.91±2.27 16.89±1.38

5-fold cross validation technique. For simplicity, the adjacency matrix is constructed
with (10). Generally, there are two evaluation metrics which can be used to evaluate the
performance of the OR methods [3,11]. One is mean-absolute-error (MAE) and the other
is mean-zero-one-error (MZE). We use these two metrics.

For each dataset, the experiment was repeated 50 times independently and the average
and the standard deviation were computed. Table 1 shows the experimental results on
MAE. It is easy to find that the proposed method LDAOR has lower MAE on the whole
in comparison with KDLOR and ORML. These indicate that it is competitive with the
other two methods in generalization ability. The reason is that not only is the local
characteristic of the data explicitly considered but also the discriminant information is
embodied in LDAOR. Actually, ORML also takes the local characteristic of the data
into consideration. However, it ignores the discriminant information in contrast with the
proposed method LDAOR. Similar phenomenon can be observed in Table 2 which reports
the experimental results on MZE.

4.2. USPS digit dataset. To further evaluate the performance of the proposed method,
we conducted an experiment on a real dataset. The used dataset is the USPS dataset [17],
which comprises 11000 hand written digital character images. Each image is grayscale
and normalized to 16×16. All images are divided into 10 categories and each category
consists of 1100 images. As in the above experiments, the Gaussian kernel is adopted and
the relevant parameters were determined by 5-fold cross validation technique. Similarly,
the adjacency matrix is constructed with (10).

In this experiment, our aim is ranking the data in terms of the true digit. In each
experiment, we randomly selected p (= 10, 20, 50, 100, 200, 500) images in each category
for training and the rest are used for testing. We repeated the experiments for 20 times
and report the average results and the standard deviation. As shown in Table 3 and Table
4, ORML performs better compared with KDLOR. The reason is that ORML makes use
of the underlying manifold structure in the data space and it has already been verified that
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Table 3. Mean-absolute-error (MAE) on the USPS dataset

The number of the training/
KDLOR ORML LDAOR

test data in each category
10/1090 2.6012±0.4521 2.5034±0.4417 2.4834±0.4317
20/1080 2.1538±0.3251 2.0873±0.4175 1.9711±0.5623
50/1050 1.9697±0.5374 1.7842±0.6418 1.7144±0.5629
100/1000 1.8432±0.2729 1.7118±0.3706 1.5653±0.3243
200/900 1.6615±0.2101 1.5912±0.2412 1.4282±0.2345
500/600 1.5243±0.3392 1.4216±0.3823 1.2962±0.3275

Table 4. Mean-zero-one-error (MZE) (%) on the USPS dataset

The number of the training/
KDLOR ORML LDAOR

test data in each category
10/1090 18.27±4.41 16.34±4.39 15.62±3.58
20/1080 13.56±1.26 12.73±2.47 11.17±2.53
50/1050 8.48±2.62 8.64±1.98 8.11±1.46
100/1000 7.43±2.72 7.18±2.24 7.03±2.26
200/900 6.31±1.49 6.12±2.12 5.88±1.65
500/600 5.45±2.76 5.01±3.02 4.24±1.27

the USPS dataset contains underlying manifold structure [11]. However, in contrast with
ORML, the proposed method LDAOR achieves lower MAE and MZE. This is because it
explicitly further embodies the discriminant information contained in the data space in
its objective function but ORML does not. In addition, LDAOR incorporates the local
structure characteristic of the data as well as ORML.

5. Conclusions. In this paper, we proposed a novel ordinal regression method called
LDAOR. LDAOR explicitly takes account of the local structure characteristics in the data
space and the discriminant information contained in the training data. LDAOR achieves
better generalization performance in contrast with its counterparts. The experimental
results indicate the effectiveness of LDAOR by comparing it with ORML and KDLOR.
In the future work, we will extend our method to more practical applications such as
medical analysis, and facial age estimation.
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