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Abstract. Computer-based evolutionary art is in the ascendant and widely applied in

media contexts such as web design, games and video animation. The process of cre-

ating interesting images can be enjoyable if a useful method is involved. In this paper

the effects of introducing novelty representation and evaluation in evolutionary art are

explored. The technical aspects of using strokes to represent gene in evolutionary art

are described, five types of strokes are defined mathematically, and genetic operators and

evolutionary parameters are explained. Also, a novel aesthetic measure is provided based

on data field, and used to evaluate fitness of individuals, as well as four existing aesthetic

measures. A number of experiments using an unsupervised evolutionary art algorithm are

performed. The results suggest that the proposed method can generate appealing images

with different styles by choosing different fitness functions, and it would inspire graphic

designers who may be interested in subtle aesthetic patterns created automatically.

Keywords: Evolutionary art, Computational aesthetics, Genetic algorithm, Evolution-
ary computation

1. Introduction. Computers are changing our understanding of creativity in humans
and machines, and presenting a radical new potential for extending our own creativity.
Computer-based evolutionary art is an emerging field that investigates the application
of evolutionary computation in the creation of aesthetically pleasing images [1]. The
algorithms can be classified into two broad categories: interactive evolution and automatic
evaluation-based approaches. For the latter, genetic programming (GP for short) has been
previously used to create such images autonomously, and several aesthetic measures are
used to calculate fitness values [2]. Generally, a lot of approaches have been proposed with
relative success [3, 4, 5, 6], and deep learning is even introduced into evolutionary art [7].
In the majority of the works that have dealt with GP-based evolutionary art, there is
one thing in common, using expression and tree-based genetic representation. In spite of
two decades of investigation, the problem of evolving images without human-in-the-loop
is still an open issue in evolutionary art. GP-based evolving images also have a number
of drawbacks, and the most important one is abstract texture, which is one of the traces
of computer. In fact, artists over centuries have experimented with art materials, layouts,
subjects, techniques. All these have resulted in a wide variety of visual output. Thus,
sustained effort is required for autonomous evolutionary art. Recently, Heijer and Eiben
introduced the use of scalable vector graphics as a genetic representation for evolutionary
art [8, 9], but the used evolutionary algorithm is still a tree representation-based GP.

In this context, we proposed an automatic generation method of aesthetic patterns
with evolving strokes, and our intentions or research questions are three-folds: (1) Is
evolving stroke a suitable representation for evolutionary art? (2) How different types
of strokes can affect the aesthetic qualities of the rendered images? (3) Is it possible
to evolve interesting, complex and aesthetically pleasing images using a measure of data
field complexity? Thus, the study innovation includes that our proposal uses strokes as
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a genetic representation, mathematically defines several strokes to investigate the visual
effect of evolving results, and proposes a novel aesthetic measure based on image data
field to quantitatively evaluate the aesthetic quality of individuals.

The remainder of this paper is organized as follows. We propose the algorithm for
evolving images generation and describe the method in detail in Section 2, as well as
strokes-based genetic representation and aesthetic measures-based fitness functions. Then
Section 3 shows several examples of resulting images with a brief discussion. Finally, the
conclusions are drawn in Section 4.

2. Strokes Evolution Using Aesthetic Measures.

2.1. Strokes and genetic representation. We represent each individual using a certain
number of strokes. For simplicity, we mathematically define various strokes using a univer-
sal expression. Each stroke includes nine components as [Xc, Yc, Rx, Ry, θ, Cr, Cg, Cb, Ca],
denoted by s. Specifically, Xc, Yc locate the position of control point of stroke, Rx, Ry

are related with the size of stroke, θ is the tilt angle of stroke, and Cr, Cg, Cb define the
color of stroke, whose transparency is determined by Ca.

(1) Line stroke. We first use four parameters Xc, Yc, Rx, θ related with the location of
strokes. Another parameter Ry is the line width, and we confine its value in the interval
[2, 10] to differ from rectangle. The remaining parameters Cr, Cg, Cb, Ca use in the later
stage of drawing or filling. The discrete point set of line stroke is generated by,

X = Xc + Rx cos(θ), (1)

Y = Yc + Rx sin(θ). (2)

(2) Circle and ellipse strokes. An ellipse stroke is a generalization of a circle stroke
with Rx = Ry. The discrete point set of ellipse stroke is generated by,

X = Xc + Rx cos(α) cos(θ) − Ry sin(α) sin(θ), (3)

Y = Yc + Rx cos(α) sin(θ) + Ry sin(α) cos(θ), (4)

where α = 0 : 2π denotes the discretely sampled points from the given ellipse.
(3) Square and rectangle strokes. A rectangle stroke is a generalization of a square

stroke with Rx = Ry. The discrete point set of rectangle stroke is generated by,

X = Xc + dX cos(θ) − dY sin(θ), (5)

Y = Yc + dX sin(θ) + dY cos(θ), (6)

where dX = [0, Rx, Rx, 0, 0], dY = [0, 0, Ry, Ry, 0] denote coordinate values of four vertexes.
(4) Petal-type stroke. It is like a flower with several petals, and the number of petals

is controlled by a random integer δ ∈ [3, 9]. The discrete point set is,

X = Xc + Rxsin
2(δθ) cos(θ), (7)

Y = Yc + Rysin
2(δθ) sin(θ). (8)

(5) Sine stroke. It is composed of a line and a sine curve, whose point set is,

X = Xc + Rxα cos(θ) − Ry sin(α) sin(θ), (9)

Y = Yc + Rxα sin(θ) + Ry sin(α) cos(θ), (10)

where α = 0 : 2π denotes the discretely sampled points from the given sine curve.
Each stroke can be considered as one chromosome. For each individual, the number of

strokes is denoted as Ns, and then we plot each stroke, and construct an image with various
strokes. To confine the strokes in a certain range, we define the bounds of coordinate axis
with the height h and the width w. For the purpose of visual aesthetics, the size of strokes
is limited by a constant η. That is to say, Xc ∈ (0, w), Yc ∈ (0, h) and Rx ∈ (0, ηw),
Ry ∈ (0, ηh). From the point of view of mathematical formalization, each individual is
formed as I = [s1; s2; . . . ; sNs

], where s = [Xc, Yc, Rx, Ry, θ, Cr, Cg, Cb, Ca] is defined on
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Figure 1. Examples of strokes and an individual

the above. The example strokes (Ns = 1) are shown in Figure 1, which in order are line,
circle, ellipse, square, rectangle, petal-type and sine strokes, from left to right, from top to
bottom. From the last one in Figure 1, there is an example image with Ns = 20 variable
strokes, whose location and color are different from each other.

2.2. Aesthetic measures and fitness functions. In this subsection we describe the
aesthetic measures used in our experiments, including Benford’s law [10] (BL for short),
fractal dimension [11] (FD for short), global contrast factor [12] (GCF for short) and
Shannon’s entropy [13] (SE for short). We provide a brief description of each measure,
and full details refer to the original papers. In addition, we present a novel measure based
on image data field [14, 15], named data field complexity (DFC for short).

(1) Data field complexity. Image data field is proposed by Wu and Gao [14] in
recent years, and has been of particular interest to researchers. Its main idea is originated
from physical field. Suppose Ω = {p = (xp, yp)|xp ∈ [1, w], yp ∈ [1, h]} is a finite space
consisting of two-dimensional pixels, f : Ω → [0, L − 1] is a mapping, f(p) denotes the
intensity of the pixel p, and then an image is a pair I = (Ω, f), where h, w, and L are the
height, width, and gray level of the image respectively.

Definition 2.1. Each pixel p ∈ Ω is a particle with mass, and the intensity change
interactions (attraction or repulsion) between each other form an image data field on Ω.
Assuming two pixels p, q ∈ Ω, let ϕ(p, q) be the potential at any pixel p produced by q, and
then it can be computed by,

ϕ(p, q) = |f(p) − f(q)| exp
(

−(max(|xp − xq|, |yp − yq|)/σ)2
)

, (11)

where |f(p) − f(q)| is the strength of interaction, and can be the mass of data object,
the latter is the distance of interaction, as well as the spatial weight, and σ denotes the
influential factor related with interaction distance.

To obtain the precise potential value of any pixel under these circumstances, all in-
teractions from pixels should be concerned. Thus, the potential of any pixel p in the
data space is the sum of all data on radiation. Additionally, the distance of interaction is
more like the Gaussian distribution, and then satisfies three sigma rule. The influential
range of any pixel in image data field is rather finite, shorter than 3σ/

√
2. Beyond this

distance, pixels are almost not influenced by a specified pixel, and the potential values
become zero. We fix the window size k = 3 in the following experiment, and σ =

√
2k/3

is calculated for Equation (11). Once ϕ(p, q) is calculated according to Equation (11), the
DFC measure of an image I can be determined by the average potential values of pixels,
calculated as,

DFC(I) =
∑

xp=1:w
yp=1:h

∑

xq=xp−k:xp+k
yq=yp−k:yp+k

ϕ(p, q)/(hw). (12)
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(2) Benford’s law. It is a measure on the distribution of intensity of pixels. For
an image, the intensity histogram is calculated using 9 bins, and the difference diff i

(i = 1, 2, . . . , 9) between actual histogram and Benford histogram is calculated by,

diff i = Histogram i − Benford i, (13)

where Histogram i is the number of entries in the intensity histogram bin number i, and
Benfordi denotes the value from the Benford distribution.

Then the BL measure is determined by,

BL(I) =

(

diff 2

max −
9
∑

i=1

diff 2

i

)/

diff 2

max, (14)

where diff 2

max = 0.563 is the maximal difference according to the original paper [10].
(3) Fractal dimension. It is characterized as a measure of the space-filling capacity

of a pattern that tells how a fractal scales differently from the space it is embedded in.
Images with a higher fractal dimension were considered complex, and those with a lower
dimension were considered uninteresting. Considering dim as fractal dimension for a given
image, calculated using box counting, the FD measure is defined by,

FD(I) = max {0, 1 − |1.35 − dim|} . (15)

(4) Global contrast factor. It computes the contrast of image at various resolutions.
Images with low contrast are considered boring, that is a low aesthetic value. Contrast
values at various resolutions Contrast i (i = 1, 2, . . . , 9) can be calculated, and the GCF
measure is defined by,

GCF (I) =

9
∑

i=1

wiContrast i, (16)

where wi (i = 1, 2, . . . , 9) are the weight values of multiple resolutions.
(5) Shannon’s entropy. It provides a probabilistic method for comparing pixels in

an image. Using a histogram of 256 intensity values, the SE measure is defined as,

SE(I) = −
255
∑

i=0

Hist ilog2(Hist i), (17)

where Hist i refers to the probability of the ith bin.
For evolutionary art, we define each one of the above aesthetic measures as the fitness

function. For each individual, we plot the figure according to the strokes, and then save
as a bitmap. In other words, considering each individual as an image I, the fitness value
of each individual can be easily calculated by Equations (12), (14)-(17).

2.3. Genetic operators.

(1) Initialization and selection. Initialization uses a number of parameters to create
new individuals. In simple terms, the procedure for creating an initial population can be
described as follows. For a given number Np, that is, the number of the population
individuals, also known as population size, we randomly generate a matrix with size of
Np × Ns for each parameter of stroke.

For selection operator, we use the well-known roulette wheel selection method, which
selects potentially useful individuals according to fitness proportion, while for survivor
selection we use elitist selection, that is, copying the best one into next generation.

(2) Crossover operator. Crossover is a genetic operator used to vary a chromosome
or chromosomes from one generation to the next, and we use one-point crossover in the
experiments. The crossover of the genetic code of two selected individuals Ia and Ib

implies: (a) selecting one subsequence from each parent; (b) swapping the subsequence
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to generate two new individuals. Supposing a crossover point c ∈ [1, Ns], the new indi-
viduals are I

′

a = [s1a; s2a; . . . ; sca; sc+1b; . . . ; sNsb] and I
′

b = [s1b; s2b; . . . ; scb; sc+1a; . . . ; sNsa]
respectively.

(3) Mutation operator. Mutation is a genetic operator used to maintain genetic
diversity from one generation of a population of genetic algorithm chromosomes to the
next, and we also use one-point operator. The mutation of the genetic code of one
selected individual Ia implies: (a) selecting one subsequence from the parent; (b) randomly
generating one subsequence with the equal length; (c) replacing the value of the chosen
gene to generate the new individual. Supposing a mutation point m ∈ [1, Ns] and the
random subsequence [sr1; sr2; . . . ; srNs−m], the new individual is determined by I

′

a =
[s1a; s2a; . . . ; sma; sr1; sr2; . . . ; srNs−m].

3. Experimental Results and Discussion.

3.1. Configuring evolutionary engine. Table 1 specifies the parameters used to con-
duct the experiments for evolving art images. Certainly, it is still an open question of
how to choose the evolutionary parameters. We perform 100 runs for each problem of
evolving images, five aesthetic measures are used as fitness functions in the unsupervised
evolutionary art, and no human evaluation or interactive evolution is involved.

Table 1. Evolutionary parameters of evolutionary art

No. Name Parameter Value
1 Bounds of the location of strokes h, w 256
2 Ratio of the size of strokes η 0.2
3 Population size Np 50
4 The number of strokes Ns 50
5 Generations G 60
6 Crossover rate Pc 0.8
7 Mutation rate Pm 0.2

3.2. Results and analyses. In this subsection we describe our experiments in evolving
art using the five aesthetic measures described in Section 2.2, and will answer our research
questions of this paper by reporting various experimental results with a brief discuss.

(1) Experiment 1: DFC. First we fix different strokes to generate evolving images
using the DFC measure. For each stroke, we perform 100 runs and collect the images of
the 2 fittest individuals of each run. From these images, we handpick 10 images (two for
each stroke) as shown in Figure 2, and almost all images have rich and variable colouring.
Compared with previous works [1, 4, 6, 9], the result images are still abstract, but clearly
with the texture of strokes, which is more like artworks by an artist or a painter.

Figure 2. Visual results using the DFC measure
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Figure 3. Statistics gathered over 100 runs

For the reference, we gather data to measure the statistics of our evolutionary art algo-
rithm, that is, the global best, the local best and the average fitness, for each individual,
for each generation and for all runs. Then we calculate the averages over 100 runs, and
present the findings in Figure 3(a). The petal-type strokes obtain higher DFC values,
which seem to dominate the look and feel of most space, and make images more interest-
ing. The evolution processes become stable within 30 generations expecting sine stroke.
Statistics using sine stroke gathered over 100 runs are listed in Figure 3(b). The evolving
curves of the global best, the local best and the average fitness appear generally upward,
although with a slightly fluctuation in an acceptable scope. Even so, the proposed method
can quickly accomplish the iteration process, and the number of iterations is only near
50. In addition, it should be noted that the experiments only use the simple genetic
algorithm, and further improvements can be implemented.

(2) Experiment 2: BL, FD, GCF and SE. We fix the different strokes to generate
evolving images using the measures of BL, FD, GCF and SE. For each stroke and each
measure, we perform 100 runs and collect the images of the fittest individual of each run,
from which we handpick 20 images (one for each stroke and each measure) as shown in
Figure 4. The images by the BL measure are more varied, and many images clearly occupy
all of the space when compared to images evolved with the other aesthetic measures. What
is apparent from images by the FD measure is that the style is different from other images
since the results by FD are very simple, and with the least colourful. The images evolved
using the GCF measure show a lot of contrast. Images using the SE measure are in
general very colourful and seem to satisfy a uniform distribution of brightness values.

In order to know whether DFC has a similar preference with the others, we gather
all the images that were produced in single aesthetic measure experiments. Then we
calculate the aesthetic value of these images using all aesthetic measures, and normalize
each aesthetic score between 0 and 1. With these data, we obtain the correlation in
evaluation scores for all aesthetic measures. The correlations are presented in Table 2.
The results from Table 2 suggest that DFC and GCF have a similar aesthetic preference
since the two aesthetic measures show a high correlation in their aesthetic evaluation of
the images (0.802), and there is the lowest correlation between DFC and FD (−0.842).
Obviously, DFC is different from the existing aesthetic measures, including BL, FD, GCF
and SE. Thus, DFC is an alternative to these aesthetic measures in evolutionary art.

(3) Experiment 3: Various strokes and measures. In the genetic representation,
we add a parameter to s as the style of strokes, then perform 100 runs for each aesthetic
measure and collect images of the fittest individual of each run. Five of them (one for
each measure) are shown in Figure 5. All images show an abstract texture and are more



ICIC EXPRESS LETTERS, PART B: APPLICATIONS, VOL.8, NO.3, 2017 465

(a) BL

(b) FD

(c) GCF
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Figure 4. Visual results using the BL, FD, GCF and SE measures

Table 2. Correlation of aesthetic evaluation between the aesthetic measures

BL FD GCF SE DFC
BL / −0.592 0.567 0.643 0.338
FD −0.592 / −0.911 −0.057 −0.842

GCF 0.567 −0.911 / 0.005 0.802
SE 0.643 −0.057 0.005 / −0.213

DFC 0.338 −0.842 0.802 −0.213 /

(a) BL (b) FD (c) GCF (d) SE (e) DFC

Figure 5. Visual results using various strokes

complex than those using single type of strokes. With the increase of Ns, results would
be more like the style of computer art as shown in previous works [1, 4, 6, 9]. Thus, in
some ways, our algorithm can be as an alternative to these existing methods.

3.3. Discussion. In this subsection, we provide a brief discuss on the proposal and three
research questions in Section 1. Related to research question (1), we define five strokes
as genetic representation and introduce them into evolutionary art. Evolving images can
be generated reasonably, as shown in Figures 4 and 5. Related to research question (2),
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we conduct a series of experiments with various strokes. Acceptable images and statistics
are shown in Figures 3 and 5. With different types of strokes, different styles of evolving
images can be produced. Related to research question (3), we perform various experiments
by choosing different fitness functions using aesthetic measures, and desired result images
are shown in Figures 2 and 4. Effective correlations between DFC and other aesthetic
measures are presented in Table 2.

4. Conclusions. In the paper, we provide the genetic representation using strokes with
five types, and then propose an unsupervised algorithm of evolving art using aesthetic
measures. Furthermore, we introduce image data field as a novel aesthetic measure in
evolutionary art. The experimental results verify the efficiency and feasibility of the
proposal, which can be an alternative to the existing methods.

There are a couple of issues that will be considered in the future research: (1) Introduc-
ing other aesthetic measures or evolutionary algorithms to improve the interestingness of
the evolved images is currently under investigation, and will be reported later; (2) The
journey of the pattern generation may be just as or more interesting than the result im-
age; thus, the extension of the proposed method to produce an animated sequence of each
selected stroke over the entire process is well worth further studying.
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