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Abstract. Unmanned helicopters may encounter disturbances and this will affect flight
attitude when they are carrying out aggressive missions. In this paper, a model predictive
control strategy for a three degree freedom (3DOF) laboratory helicopter is studied to
resist measurable disturbance. A linearized state space model with disturbance item is
first derived to describe the attitude during flighting process. Model predictive controller
based on disturbance prediction for a class of smooth and measurable disturbance is then
designed. Experimental results show that the adopted model predictive control based on
disturbance prediction resists disturbance effectively.
Keywords: Model predictive control, Disturbance, 3DOF laboratory helicopter, State
space model

1. Introduction. Unmanned helicopters have the advantages of flying at low altitude
and low speed, taking-off and landing vertically in a small area of ground and reposing
in the air. These characteristics make them have wide applications and development
prospects for both civil and military fields. However, their flight attitude control is a
great challenge due to their special dynamic properties, such as nonlinearity, coupling,
parametric uncertainties and disturbance [1].

The trajectory tracking controller is an important part of an unmanned helicopter and
attracts much attention of the researchers to propose many flight control schemes, such
as adaptive sliding mode control [2], robust linear quadratic regulator (LQR) control [3]
and nonlinear adaptive control [4]. In recent years, model predictive control (MPC) has
been widely used in industrial process control due to its ability to deal with multivariable
systems and transport delays in the optimization problem [5]. Some researchers utilized
MPC to control helicopter systems [6,7]. In practical applications, the attitude of the
system may deviate from the expected due to the presence of disturbances, which possibly
lead to influence system instability. Thus, it is necessary to consider external disturbances.
Due to the principle of MPC, the future behavior of the system needs to be predicted.
Future disturbances are not known at current sampling time. Usually assume that it
is in accordance with the current sampling time [5] which will produce predictive error
largely and affect control performance. Thus, if we can estimate and predict the future
disturbances online effectively, it is possible to eliminate disturbance influences and the
system can still be in accordance with the desired attitude. In this work, for a class
of smooth and measurable disturbance, we design a model predictive controller based
on disturbance prediction to predict future disturbances. The performance of applied
control technique is illustrated and compared to the model predictive controller without
predicting disturbances.
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The paper is organized as follows. In Section 2, the linear time-invariant model of
the laboratory helicopter dynamic is described and a state space representation with
disturbance item is derived based on the model. In Section 3, the prediction method
of smooth disturbances is described and a model predictive controller of the laboratory
helicopter dynamic is designed. In Section 4, several experiments are carried out to verify
the method is effective. Finally, conclusions are drawn in Section 5.

2. Problem Statement and Preliminaries. This work is based on the model of a
3DOF laboratory helicopter system from Quanser Consulting, Inc. The 3DOF helicopter
experiment provides a bench top model of a tandem rotor helicopter, which is used for
transport, search and rescue missions. The 3DOF helicopter consists of a base upon which
an arm is mounted. The arm carries the helicopter body on one end and a counter weight
on the other end. The arm can pitch about an elevation axis as well as swivel about a travel
axis. Encoders that are mounted on these axes allow measuring the elevation, pitch and
travel of the arm. The effective position resolution is 0.0879 degrees about the elevation
and pitch axis and 0.0439 degrees about the travel axis. Two DC motors with propellers
mounted on the helicopter body can generate a force proportional to the voltages applied
to the DC motors approximatively [8]. The helicopter experimental system is shown in
Figure 1.

Figure 1. Laboratory helicopter model

The system dynamics can be described by a highly nonlinear state model [4]. We can
linearize the nonlinear equations under following assumptions.

Assumption 1: ignore all friction.
Assumption 2: ignore the length of pendulum for the elevation axis and the length of

pendulum for pitch axis.
Assumption 3: helicopter is axisymmetric about the pendulum for pitch axis (i.e., mass

of the front section of the helicopter is equal to mass of the rear section).
Then the following three differential equations can be obtained

Jεε̈ = kfVsla − Fgla
Jθθ̈ = kfVdlh
Jϕϕ̈ = −Kgθ

(1)

where Vs, Vd are sum and difference of control voltages of the front and back motors,
respectively. ε, θ, ϕ are elevation angle, pitch angle and travel angle. Jε, Jθ, Jϕ are
moment of inertia about the elevation, pitch and travel axes. And Jε = 2mf la

2 + mwlw
2,

Jθ = 2mf lh
2, Jϕ = mwlw

2 +2mf lh
2 +2mf la

2. Fg = mgg is the effective force of helicopter.
Kg = (lwmw − 2lamf ) g. The symbols used in the above model are described in Table 1.
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Table 1. Main parameters description of the 3DOF laboratory helicopter

Symbol Description Value Units

mf , mb Mass of front and back propeller assembly 0.713 kg
mw Mass of the counterweight 1.87 kg
mg Effective mass of helicopter 0.17 kg
kf Propeller force-thrust constant 0.1188 N/V
la Distance between travel axis to helicopter body 0.66 m
lh Distance between pitch axis to each motor 0.178 m
lw Distance between travel axis to counterweight 0.47 m
g Gravitational constant 9.81 m/s2

In order to study the ability of resisting disturbance, we introduce the active disturbance
system (ADS) on elevation axis which can produce a class of smooth and measurable
disturbance. This kind of disturbance could simulate a class of real disturbance. The
ADS as shown in Figure 1 consists of a lead screw driven by a motor. Attached to the
lead screw is a mass that can be made to travel along the arm. The position of disturbance
mass on the arm can be measured by an encoder. We introduce constant matrix Bcd, and
interference item

d(t) =
(mg + mδ(t)) gla

Jε

(2)

where mg is effective mass of helicopter and mδ(t) is effective disturbance mass. Moving

the mass results in changing mδ(t). Let state x =
[
ε, θ, ϕ, ε̇, θ̇, ϕ̇

]T

, input u = [Vf , Vb]
T ,

where Vf , Vb are the control voltages of the front and back motors, respectively. Elevation
angle ε and pitch angle θ are chosen as the controlled variables, i.e., y = [ε, θ]T , Then, we
can obtain the following state space equations{

ẋ(t) = Acx(t) + Bcuu(t) + Bcdd(t)
y(t) = Cx(t)

(3)

where

Ac =



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0

0 −Kg

Jϕ
0 0 0 0

 , Bcu =



0 0

0 0

0 0
kf la
Jε

kf la
Jε

kf lh
Jθ

−kf lh
Jθ

0 0


,

Bcd =


0
0
0
−1
0
0

 , C =

[
1 0 0 0 0 0
0 1 0 0 0 0

]

Figure 2 shows the effective disturbance that is attained at various positions along the
arm away from the home position to max position [9]. As can be seen, it approximates
linear relationship between mass position and effective disturbance.
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Figure 2. Effective disturbance vs mass position

We discrete continuous-time system (3) and select the discretization method as zero-
order holder (ZOH). Thus, a corresponding discrete-time system has been gained as{

x(k + 1) = Ax(k) + Buu(k) + Bdd(k)
y(k) = Cx(k)

(4)

where A, Bu and Bd are coefficient matrices corresponding to Ac, Bcu and Bcd after
discretization.

3. Design and Analysis of Control System.

3.1. Prediction algorithm of disturbance. MPC strongly depends on plant model.
If we do not correct disturbance promptly, it will cause model mismatch and the track-
ing performance can be decreased. Therefore, we design a disturbance predictor (DP)
described below in detail to predict future disturbances.

This work assumes that the disturbances satisfy the following conditions.
Assumption 4: disturbances can be measured.
Assumption 5: disturbances are smooth.
The measured value mδ(t) of effective disturbance is obtained at the sampling time k.

Then interference item d can be calculated according to (2). Sampling interval is Ts. The
rate of change of disturbance item is

q(k) =
d(k) − d(k − 1)

Ts

(5)

We use linear function to predict future disturbances. Namely future disturbances increase
or decrease in accordance with the rate of change of the disturbance at current sampling
time. Predictions for the future disturbances are as follow.

d(k + 1|k) = d(k) + qTs

d(k + 2|k) = d(k + 1|k) + qTs
...

d(k + p − 1|k) = d(k + p − 2|k) + qTs

(6)
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Then disturbance increment is as follows:

∆d(k) = qTs

∆d(k + 1|k) = qTs
...

∆d(k + p − 1|k) = qTs

(7)

where ∆d(k) = d(k) − d(k − 1).

3.2. Design of a model predictive controller. The control system structure adopted
in this work is shown in Figure 3. The model (2) is rewritten as incremental model [9]{

∆x(k + 1) = A∆x(k) + Bu∆u(k) + Bd∆d(k)
y(k) = C∆x(k) + y(k − 1)

(8)

where
∆x(k) = x(k) − x(k − 1)
∆u(k) = u(k) − u(k − 1)

(9)

Control horizon is m, prediction horizon is p, and m ≤ p. In order to derive prediction
equation system, make the assumption: control increment is unchanged when exceeding
control horizon.

MPC

3-DOF

Laboratory

Helicopter

Disturbance

Predictor

Filter and Derivative

yur

dD

y

Figure 3. Structure of control system

The control vector, system predictive output, and disturbance increment are defined as
below, respectively.

∆U(k) =


∆u(k)

∆u(k + 1)
...

∆u(k + m − 1)


(m×nu)×1

, Y (k + 1|k) =


y(k + 1|k)
y(k + 2|k)
...
y(k + p|k)


(p×nc)×1

,

∆D(k) =


∆d(k)

∆d(k + 1|k)
...

∆d(k + p − 1|k)


p×1

The prediction for the plant output during future sampling instant is

Y (k + 1|k) = Sx∆x(k) + Iy(k) + Sd∆D(k) + Su∆U(k) (10)
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where

Sx =



CA
2∑

i=1

CAi

...
p∑

i=1

CAi


(p×nc)×nx

, Sd =



CBd 0 0 · · · 0
2∑

i=1

CAi−1Bd CBd 0 · · · 0

...
...

...
. . .

...
p∑

i=1

CAi−1Bd

p−1∑
i=1

CAi−1Bd · · · · · · CBd


(p×nc)×p

,

I =


Inc×nc

Inc×nc

...
Inc×nc


(p×nc)×nc

,

Su =



CBu 0 0 · · · 0
2∑

i=1

CAi−1Bu CBu 0 · · · 0

...
...

...
. . .

...
m∑

i=1

CAi−1Bu

m−1∑
i=1

CAi−1Bu · · · · · · CBu

...
...

...
. . .

...
p∑

i=1

CAi−1Bu

p−1∑
i=1

CAi−1Bu · · · · · ·
p−m+1∑

i=1

CAi−1Bu


(p×nc)×(m×nc)

Based on the original MPC problem, the following open-loop optimal control problem can
be formulated:

min
∆U(k)

J = ||Γy(Yp(k + i|k) − R(k + i))||2 + ||Γu∆U(k)||2 (11)

where weighting matrix and reference input are defined as below, respectively.{
Γy = diag(Γy,1, Γy,1, · · · , Γy,p)

Γu = diag(Γu,1, Γu,1, · · · , Γu,m)
, R(k + 1) =


r(k + 1)
r(k + 2)

...
r(k + p)


(p×nc)×1

In order to solve the optimization problem conveniently, define the auxiliary variable

ρ =

[
Γy(Yp(k + 1|k) − R(k + 1))

Γu∆U(k)

]
(12)

Then, the objective function (7) is changed into

J = ρT ρ (13)

Take (10) into (12)

ρ =

[
ΓySu

Γu

]
∆U(k) −

[
ΓyEp(k + 1|k)

0

]
= Az − b (14)

where

z = ∆U(k), A =

[
ΓySu

Γu

]
, b =

[
ΓyEp(k + 1|k)

0

]
, (15)

Ep(k + 1|k) = R(k + 1) − Sx∆x(k) − Iyc(k) − Sd∆D(k) (16)

Therefore, the unconstrained predictive control open-loop optimal control problem (11)
is changed into

min
z

ρT ρ, where ρ = Az − b (17)



ICIC EXPRESS LETTERS, PART B: APPLICATIONS, VOL.8, NO.2, 2017 435

When dρT ρ
dz

= 0, the optimal solution of the parameter vector is

z =
(
AT A

)−1
AT b (18)

Taking (15) into (18), obtain optimized sequence of optimal control problem

∆U(k) =
(
ST

u ΓT
y ΓySu + ΓT

u Γu

)−1
ST

u ΓT
y ΓyEp(k + 1|k) (19)

According to the receding horizon control law, the control variable at sampling instant k
is

∆u(k) = KmpcEp(k + 1|k) (20)

where Kmpc = [Inu×nu 0 · · · 0]nu×(nu×m)

(
ST

u ΓT
y ΓySu + ΓT

u Γu

)−1
ST

u ΓT
y Γy.

It is necessary to develop a way to estimate the system states. By taking low pass filter,
the angular velocities states of system states ε̇, θ̇, ϕ̇ are estimated.

4. Experimental Results. The experiment setup is shown in Figure 1. A 1.86GHz
computer with Quanser Q4 data acquisition board is used to process feedback signals
and derive the control input for the system. The mechanical system parameters used are
shown in Table 1. The initial condition is x[0] = [−27.5 0 0 0 0 0]T . The following
parameters are chosen by experience. The prediction horizon and control horizon are
p = 100 and m = 20, respectively. Sampling time is Ts = 0.008(s). Γy,a = 10, where
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(b) Response of pitch angle
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(c) Position of disturbance mass during experiment

Figure 4. Tracking results with external disturbance
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a = 1, 2, . . . , p and Γu,b = 10, where b = 1, 2, . . . ,m. Considering the characteristics of
front and back motors, inputs of the two motors are limited between +20(V) and −20(V).

The low pass filter 15791s/s2 + 226.1947s + 15791 are adopted for ε̇, θ̇, ϕ̇ estimation.
Figure 4(a) and Figure 4(b) show a comparison of elevation and pitch responses under

disturbance between the MPC with DP and without DP. The latter assumes that the
disturbances are not changed after current sampling time. Figure 4(c) shows position of
disturbance mass during experiment. It can be seen from the result of the experiments,
at the stage of external disturbance changing about t = 40(s) and t = 80(s), elevation re-
sponse of the MPC without DP has larger shocks. On the contrary, the MPC with DP can
efficiently compensate for external disturbance and have a better tracking performance.

5. Conclusions. In this paper, a model predictive controller of a 3DOF laboratory he-
licopter which is based on disturbance prediction is designed. System design with the
proposed controller is carried out and the improved control performance compared to the
controller without disturbance prediction is illustrated via experiments. The experimental
results show that our proposed controller provides a better 3DOF laboratory helicopter
attitude control.

In further research, we will put more emphasis on modifying the values of parameters
to perfect the mathematical models and consider other issues that influence the flight
performance.
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