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Abstract. Considering the modeling errors, environment disturbances and rudder char-
acteristics, the course-controlling of unmanned surface vessel (USV) is a nonlinear con-
trol problem with unmatched and uncertainties. In order to solve the above problems, this
paper presents an adaptive RBF neural network (ARBFNN) controller which is combined
with the technology of backstepping and ARBFNN. In the process of controller design,
only one neural network is used to approximate the whole unknown dynamics which con-
tain modeling errors and environment disturbances. It is theoretically proved that the
proposed ARBFNN controller can make the USV track the designed heading angle and
turning rate with arbitrary accuracy, while guaranteeing the uniform ultimate bounded-
ness of the closed-loop course tracking control system of USV. Comparative studies are
carried out between the proposed control scheme and the traditional PD control under
the same conditions, and the results show that the proposed control scheme has a better
performance.
Keywords: USV, ARBFNN, Backstepping, Rudder characteristics, Course control

1. Introduction. Unmanned surface vessel (USV), as an intelligent motion platform,
can be widely used in hydrographic survey, channel detection, environment monitoring,
modern warfare, etc. [1,2]. In actual marine environment, USVs are affected by sea wind,
current, waves, and other interference factors [3]. The hull various hydrodynamic coeffi-
cients will change with the speed change which makes the USV has nonlinear, uncertainty
and time-varying characteristics. Therefore, the course tracking of USV with the charac-
teristics of the rudder is an unmatched uncertain nonlinear control problem. In this case,
traditional PID control cannot meet the demands of the USV navigation control [4].

With the development of nonlinear control theory, backstepping approach is introduced
to design course controller. An adaptive robust course control algorithm is proposed
by incorporating the technique of integrator into backstepping design [5]. Combining
Nussbaum gain technique with backstepping algorithm, a nonlinear adaptive controller is
designed without prior knowledge about sign of uncertain control coefficient [6]. However,
there always exist uncertainty problems in the actual maneuvers of ship, such as modeling
errors and unknown external environment disturbance. So many adaptive backstepping
algorithms based on neural networks and fuzzy systems are widely used in the design of
the course controller [7,8]. Based on the dynamic surface control and neural networks, a
direct adaptive neural networks controller is proposed for a class of uncertain nonlinear
SISO systems in the presence of input saturation and applied to ship steering control
[9]. However, the existence of hydraulic serving system for steering engine causes the
problem of the lag of control input. So in order to get a better control effect, it is needed
to consider the servo characteristics of actuator in the design of course controller. In
addition, a single neural network and a single fuzzy approximation approach are presented
for a class of uncertain strict-feedback nonlinear systems in [10,11], respectively. Following
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this approach, the structure of the designed controller is simper and the computational
burden is lighter.

Based on the backstepping technique and adaptive RBF neural network (ARBFNN),
this paper proposes a novel adaptive tracking control algorithm for USV course-controlling
with characteristics of the rudder and system uncertainties. The RBF neural network is
used as an approximation for the system uncertainties including modeling errors and ex-
ternal disturbances. The main advantages of the proposed controller are that: (1) the
characteristics of the rudder are considered; (2) only one neural network is used to ap-
proximate the lumped unknown function of the course-controlling system at the last step
of backstepping. Using Lyapunov stability theory, the uniformly ultimately boundedness
of all signals in the closed-loop system is proven. The goal of course-changing adaptive
tracking control of USV is realized. At last the correctness and robustness of the proposed
control algorithm are verified through simulation.

This paper is organized as follows. Section 2 presents the mathematical model of USV.
Section 3 develops, in specific, the design of an ARBFNN controller. Section 4 presents
the simulation for the proposed method. Section 5 contains conclusions.

2. Problem Formulation and Preliminaries.

2.1. Problem formulation. Considering the influence of the modeling errors and envi-
ronment disturbances, the uncertain nonlinear mathematical model of USV is expressed
as

T ψ̈ + ψ̇ + αψ̇3 + λ1

(
ψ, ψ̇

)
= Kδ + w1 (1)

where ψ is heading angle, δ is rudder angle, α is called Norrbin coefficient, λ1 is modeling
errors, w1 is equivalent disturbance rudder angle of the environment disturbances due
to wind, waves and currents, and K and T are the gain constant and time constant,
respectively.

The rudder servo characteristics can be regarded as a small closed loop servo system.
Cosidering the modeling errors and external disturbances, the mathematical model can
be described as

δ̇ = −δ/TE +KEδE/TE + λ2(δ, δE) + w2 (2)

where KE is control gain of rudder, TE is time constant of rudder, and δE is rudder order
for steering control.

From April to September 2015, the USV of Dalian Maritime University’s “LanXin”
were a large number of direct sailing, turning, and zigzag manipulation tests [12,13]. With
experimental data obtained on-site, the manipulation parameters of USV can be identified
by using the least-squares method as follows: K = 0.707, T = 0.332, KE = 1, TE = 0.2
and α = 0.001.

Assumption 2.1. The USV’s smooth reference trajectory ψr and its first 2 derivatives
ψ̇r, ψ̈r are known and bounded.

Assumption 2.2. The modeling errors λ1 and λ2 are unknown and environment distur-
bances w1 and w2 are unknown and bounded.

2.2. RBF neural network. RBF neural network can be divided into three layers: the
input layer, the hidden layer and the output layer. It is a feed-forward network, which
has a strong ability of online self-learning. It can approximate the nonlinear function with
any accuracy, and has a fast convergence rate.

The Gauss function is chosen as the basis function of the neural network in this paper.
The expression of Gauss function is

ϕi(x) = exp

[
−(x− ci)

T (x− ci)

2σ2
i

]
, i = 1, 2, . . . , q (3)
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where ϕi is the output of the i hidden node, σi is the generalized constant of the hidden
node, q is the number of the i hidden nodes, x = [x1, x2, . . . , xM ]T is the input samples,
and ci is the center vector of Gauss function of the i hidden node, ci = [ci1, ci2, . . . , ciM ]T .

RBF neural network realizes the nonlinear mapping of the input layer to the output
layer. The output of the network can be described as

yk =

q∑
i=1

wkiϕi

(
∥x− ci∥2

)
, i = 1, 2, 3, . . . , q (4)

where yk is the output of the k node of the output layer, and wki is the weight coefficient
of the hidden layer to the output layer.

Lemma 2.1. The universal approximation properties show that any real continuous func-
tion f(x) on a compact set Ωx ⊂ RM can be approximated by an RBF neural network to
arbitrary accuracy. This can be expressed as

f(x) = W ∗Tϕ(x) + ε(x) ∀x ∈ Ωx ⊂ RM (5)

where W ∗ is the ideal weight vector of RBF neural network, and ε(x) is the approximation
error between the ideal approximation value and actual function value.

W ∗ := arg min
W∈Rq

{
sup
x∈Ω2

∣∣f(x) −W Tϕ(x)
∣∣} (6)

Assumption 2.3. The ideal weight vector W ∗ of RBF neural network and the approxima-
tion error ε(x) between ideal approximation value and actual function value are bounded
and this can be expressed as

∥W ∗∥ ≤ Wm, |ε(x)| ≤ εm ∀x ∈ Ωx (7)

where Wm and εm are positive constants.

3. ARBFNN Controller Design. First of all, define x1 = ψ, x2 = ψ̇, x3 = δ, u = δE,
X = [x1 x2 x3]

T . The USV’s nonlinear mathematical model (1) can be rewritten as

ẋ1 = x2, ẋ2 = f1(x1, x2) + g1x3 + w1, ẋ3 = f2(x3) + g2u+ w2 (8)

where f1(x1, x2) = −
(
x2 +αx3

2 +λ1

)
/T and f2(x3) = −x3/TE +λ2 are unknown nonlinear

functions including modeling errors, g1 = K/T and g2 = KE/TE are gain constants which
have identified, and w1 and w2 are unknown bounded environment disturbances.

Theorem 3.1. For the reference signal ψr, consider the system (8) satisfying Assumptions
2.1 and 2.2. Suppose that the lumped unknown function d can be approximated by the RBF
neural network in the sense that the approximating error is bounded. If the control law
and the adaptive law are chosen as (21), then the actual course ψ can track a desired
time-variant reference trajectory ψr with arbitrary accuracy and all the signals in the
closed-loop system remain bounded.

The proof on Theorem 3.1 consists of three steps.
Step 1: Define the tracking errors as z1, z2 and z3.

z1 = x1 − ψr, z2 = x2 − a2, z3 = x3 − a3 (9)

where a2 and a3 are virtual control laws.
Differentiating z1, we have

ż1 = x2 − ψ̇r = z2 + a2 − ψ̇r (10)

Consider a Lyapunov function candidate as V1 = z2
1/2 and its time derivative is

V̇1 = z1ż1 = z1

(
z2 + a2 − ψ̇r

)
(11)
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Design the virtual control law for (11) as

a2 = −c1z1 (12)

where c1 > 0 is design parameter.
Substituting (12) into (11), we have

V̇1 = −c1z2
1 + z1z2 − z1ψ̇r (13)

Step 2: Differentiating z2, we have

ż2 = ẋ2 − ȧ2 = f1 + g1z3 + g1a3 + w1 − ȧ2 (14)

Consider a Lyapunov function candidate as V2 = V1 + z2
1/2 and its time derivative is

V̇2 = V̇1 + z2ż2 = −c1z2
1 + z1z2 − z1ψ̇r + z2 (f1 + g1z3 + g1a3 + w1 − ȧ2) (15)

Design the virtual control law for (14) as

a3 = −(z1 + c2z2)/g1 (16)

where c2 > 0 is design parameter.
Substituting (16) and (13) into (15), we have

V̇2 = −c1z2
1 − c2z

2
2 − z1ψ̇r + z2 (f1 + g1z3 + w1 − ȧ2) (17)

Step 3: Differentiating z2, we have

ż3 = ẋ3 − ȧ3 = f2 + g2u+ w2 − ȧ3 (18)

Define d =
[
−z1ψ̇r + z2 (f1 + w1 − ȧ2) + z3 (f2 + w2 − ȧ3)

]/
z3. Based on Lemma 2.1,

the RBF neural network (5) can be employed to approximate the unknown term d.

Define x =
[
x1 x2 x3 z1 z2 z3 ψr ψ̇r

]T

and d as the input vector and output variable of

the RBF neural network, respectively. The unknown term d can be expressed as

d = W ∗Tϕ(x) + ε (19)

where W ∗ is the ideal weight vector of RBF neural network and ε denotes the minimum
approximation error.

Consider the Lyapunov function candidate as V3 = V2 +z2
3/2+W̃ T W̃/(2γ) and its time

derivative is

V̇3 = −c1z2
1 − c2z

2
2 − z1ψ̇r + z2 (f1 + g1z3 + w1 − ȧ2) + z3 (f2 + g2u+ w2 − ȧ3)

−W̃ T ˙̂
W/γ

= −c1z2
1 − c2z

2
2 + z3(g1z2 + d+ g2u) − W̃ T ˙̂

W/γ

(20)

where W̃ = W ∗−Ŵ , Ŵ is the estimate of the ideal weight vector W ∗ and γ is the positive
design constant.

Design the actual control law and adaptive law for (20) as

u = −
[
g1z2 + c3z3 + Ŵ Tϕ(X)

] /
g2,

˙̂
W = γ

[
z3ϕ(X) + κŴ

]
(21)

where c3 > 0 is a design parameter.
Substituting (21) and (17) into (20), we have

V̇3 = −c1z2
1 − c2z

2
2 − c3z

2
3 + z3

[
W̃ Tϕ(X) + ε

]
− z3W̃

Tϕ(X) − κW̃ T Ŵ

= −c1z2
1 − c2z

2
2 − c3z

2
3 + z3ε− κW̃ T Ŵ

(22)

According to the perfect square inequality and (7), we have

εz3 ≤
(
ε2

m + z2
3

)
/2 (23)

−κW̃ T Ŵ ≤ −κW̃ T W̃/2 + κ ∥W ∗∥2 /2 ≤ −κW̃ T W̃/2 + κW 2
m/2 (24)

where εm and Wm represent the least upper bounds of |ε| and ∥W ∗∥, respectively.
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Substituting (23) and (24) into (22), we have

V̇3 ≤ −c1z2
1 − c2z

2
2 − c3z

2
3 − κW̃ T W̃/2 + ε2

m/2 + z2
3/2 + κW 2

m/2 ≤ −aV3 + C (25)

where a = min{2c1, 2c2, 2c3, κγ}, C = ε2
m/2 + z2

3/2 + κW 2
m/2.

Integrating the inequality (25) yields

0 ≤ V3(t) ≤ C/a+ [V3(0) − C/a]e−at (26)

The above inequality (26) shows that V3(t) is uniformly ultimately bounded. Then
according to V3 = V2+z2

3/2+W̃ T W̃/(2γ), z1, z2, z3, W̃ are uniformly ultimately bounded.

Further, based on z1 = ψ−ψr, z2 = ψ̇−a2, z3 = δ−a3, (12) and (16), we know that ψ, ψ̇,

a2, a3 are bounded. Moreover, since W̃ are bounded due to Assumption 2.3, Ŵ = W ∗−W̃
are bounded. Thus, all signals in the closed loop course-controlling system are uniformly
ultimately bounded.

Substituting V3(t) into (26), we have

|z1| ≤
√

2C/a+ 2[V (0) − C/a]e−at (27)

For any given ς1 >
√

2C/a, there exists a constant T1 > 0 such that |z1| ≤ ς1 for
all t > T1. Thus, the vessel heading angle error can converge to the compact set Ω1 =
{z ∈ R||z| ≤ ς1}. Since

√
2C/a can be made arbitrarily small by suitably selecting design

parameters c1, c2, c3, κ, γ, the vessel can be maintained at the desired values of its heading
angle with arbitrary accuracy.

Theorem 3.1 has been proved.

4. The Simulation and Comparison Studies. In this section, the simulations are
carried out to validate the proposed ARBFNN controller for USV’s course tracking. In
addition, performance comparisons between the proposed ARBFNN controller and tradi-
tional PD controller under the same parameters are conducted to assess the adaptability
and robustness of the proposed control scheme. The proposed ARBFNN controller (21)
for course tracking is tested on “LanXin” USV in two cases.

4.1. ARBFNN controller. The design parameters of ARBFNN controller are chosen
as: c1 = 4, c2 = 15, c3 = 20, κ = 0.01, γ = 1. The modeling errors and environment
disturbances are set as λ1 = 0.04ė + 0.1e, w1 = 0.1 sin t cos(0.2t), λ2 = 0.2δ + 0.1δE,
w2 = 0.2H, and H is Gauss white noise after two order filters. The input vector of the

RBF neural network is x =
[
x1 x2 x3 z1 z2 z3 ψr ψ̇r

]T

. The design parameters of network

are chosen as: node number q = 20, the centers ci (i = 1, 2, . . . , 20) evenly spaced in
[−3.2 3.2]× [−1.6 1.6]× [−0.62 0.62]× [−1 1]× [−1 1]× [−1 1]× [−1 1]× [−1 1] and the
width σi = 5 (i = 1, 2, . . . , 20). The following simulations are carried out.

Case 1: The simulation results without modeling errors and environment disturbances
are depicted using solid line in Figures 1(a) to 1(f). The reference heading angles used in
simulation study are chosen as ψr = 90◦ and ψr = 30 sin(0.2t), respectively.

Case 2: The simulation results in the presence of modeling errors and environment
disturbances are depicted using solid line in Figures 2(a) to 2(f). The reference heading
angles used in simulation study are ψ = 90◦ and ψ = 30 sin(0.2t), respectively.

From Figures 1(a) and 1(b), it is observed that the ARBFNN controller can force the
actual heading angle ψ and turning rate r of the USV to arrive the reference heading angle
ψr and zero in around 5s, respectively. Figure 1(d) shows that the actual heading angle ψ
asymptotically tracks the reference heading angle ψr with high accuracy and Figure 1(e)
presents the change of turning rate r. The control rudder angle δ is shown in Figures 1(c)
and 1(f) which illustrate the change of rudder angle δ in ψr = 90◦ and ψr = 30 sin(0.2t).
Figure 2 shows that the actual heading angles are still able to track the reference heading
angle in the presence of modeling errors and environment disturbances. The above results
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Figure 1. Case 1 (the comparison simulation results between ARBFNN
controller and PD controller) ψr = 90◦: (a) heading angle; (b) turning rate;
(c) rudder angle; ψr = 30 sin(0.2t): (d) heading angle; (e) turning rate; (f)
rudder angle

Figure 2. Case 2 (the comparison simulation results in the prensence of
modeling errors and environment disturbances) ψr = 90◦: (a) heading angle;
(b) turning rate; (c) rudder angle; ψr = 30 sin(0.2t): (d) heading angle; (e)
turning rate; (f) rudder angle

reveal that the ARBFNN controller can implement USV’s course-controlling and has
the robustness against uncertain environment disturbances and adaptability to uncertain
modeling errors.

4.2. Traditional PD controller. In this subsection, we will compare the performance
of the proposed control scheme with that traditional PD control (28).

δPD = kpe(t) + kdė(t) (28)

where δPD is controlled quantity output of PD controller, and kp = 1.2 and kd = 2.4
are the proportionality coefficient and differential coefficient, respectively. e(t) is heading
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angle error. The simulation studies for the PD controller are carried out in two cases in
Section 4.1. The simulation results are depicted using dashed line in Figure 1 and Figure
2.

In order to further compare the effects of ARBFNN controller and PD controller, the
performance indexes are set as: the regulation time Te, the evaluation function of course
tracking errors Θe =

∫ ∞
0

|ψ − ψr|dt, the evaluation function of actual steering angle

Je =
∫ ∞
0

|δ|dt. The greater the Θe is, the worse the performance of the course control is;
the greater the Je is, the greater the energy consumption is. The performance indexes of
the ARBFNN controller and PD controller are summarized in Table 1.

Table 1. Performance indexs of ARBFNN controller and PD controller

Performance index
ARBFNN controller PD controller
Case 1 Case 2 Case 1 Case 2

ψr = 90◦
Te/s 5 5 15 15
Θe 210 255 318 388
Je 134 226 127 215

ψr = 30 sin(0.2t)
Θe 58 59 187 204
Je 278 304 254 292

The data of Table 1 display that the traditional PD controller can keep the USV at the
desired target value in around; however, the steady-state performance of the PD controller
under modeling errors and environment disturbances becomes unsatisfactory. In case 2,
the PD controller cannot eliminate tracking errors. In two cases, the energy consumption
of ARBFNN controller is slightly greater than the PD controller.

5. Conclusions. In this paper, an ARBFNN controller is developed for the course-
controlling system of USV with the characteristics of rudder in the presence of modeling
errors and environment disturbances. The proposed controller guarantees the uniformly
ultimately boundness of the closed-loop system. Adaptive updating laws of the proposed
controller are designed to against unknown bound environment disturbances and adapt
to uncertain modeling errors. The proposed scheme performance has been confirmed
by simulation results. Simulation results and simulation comparisons prove that the pro-
posed course-controlling controller has superior adaptability for modeling errors and good
robustness against disturbances. In future work, input saturation constraints will be con-
sidered to handle the possible instability problem based on the existing course control
system of USV.
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