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Abstract. Identifying the shortest path is a subject of great practical importance to
many researchers. In the past decade, many studies have investigated the shortest path
problem with crisp link cost. However, in many transportation networks, the link cost
usually varies from day to day due to the variability in the traffic demand. In this paper,
we develop a Dijkstra algorithm to deal with the shortest path problem under uncertain
environment. To characterize the uncertainty of link cost, various fuzzy numbers are
implemented to achieve this objective. A unified distance function is defined to convert
different types of fuzzy numbers into crisp numbers. Then Dijkstra algorithm is used
to find the shortest path in the network. A numerical example is used to illustrate the
efficiency of the proposed method.
Keywords: Shortest path, Fuzzy number, Dijkstra algorithm, Uncertainty

1. Introduction. Finding the shortest path between two nodes is a subject of great
practical importance to planners and engineers involved in many network optimization
problems. Since it is widely used in many applications, e.g., road navigation [1], network
design [2], this problem has attracted much attention from many researchers. A number
of studies have been performed to reduce the computational time for finding the shortest
path between two nodes and many algorithms have been developed to find the shortest
path in large scale networks. For example, Bertsekas [3] proposed a simple but efficient
label correcting algorithm for solving the shortest path problem, in which he marked each
node using different labels and scanned the candidate nodes with an ascending labels.
Iori et al. [4] presented a label setting algorithm for solving multi-objective shortest
path problems by aggregating the ordering of the labels. Among these methods, Dijkstra
algorithm [5] is one of the most commonly used algorithms to identify the minimum cost
path in many network optimization problems. For example, Yin and Wang [6] developed
an improved Dijkstra algorithm, in which they considered different types of weights to
reduce the computational time.

However, in the above studies, the link cost is treated as static, whereas, in many realis-
tic scenarios, the link cost usually varies with time. For example, in many transportation
networks, due to the variability in the traffic demand, the travel time related to each link
varies provided that the link cost is a function of link flow [7]. Additionally, in the wireless
network, data packet is forwarded along the minimum cost path. However, due to the
uncertainty in demand, different degrees of congestion arise in the network, which in turn
affect the packet transfer time [8]. Among the literature, many studies have used fuzzy
numbers to characterize the uncertainty associated with each link [9, 10]. For example,
Okada and Soper [11] employed fuzzy number to represent the arc length and defined a
fuzzy min operator to find out the nondominated path in the network. Kung and Chuang
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[12] considered the fuzzy shortest path problem and defined a similarity metric to quantify
the similarity among different fuzzy shortest paths.
However, fuzzy numbers have also been criticized due to several crucial deficiencies.

First of all, by using fuzzy numbers, the shortest path found by the algorithm is also a
fuzzy number. Due to the uncertainty in arc length, several candidate shortest paths are
available in the final results. However, how to order the fuzzy numbers is still an open
issue. Secondly, if the link cost is represented by several different types of fuzzy numbers,
e.g., normal fuzzy numbers or triangular fuzzy numbers, many arithmetic operations,
such as, fuzzy addition, fuzzy subtraction, and fuzzy multiplications, become infeasible
because they are designed only for the fuzzy numbers in the same form. For example,
as in [9], since their method is only able to handle the trapezoidal fuzzy numbers, the
method cannot handle various types of fuzzy arc lengths. As a result, we cannot compare
the proposed method in this paper with it.
Consider the various deficiencies existing in the current methods, we are motivated to

develop a new algorithm to overcome these drawbacks to address the shortest path prob-
lem in the uncertain environment. Specifically, in the proposed method, fuzzy numbers
are still used to characterize the uncertainty of arc length. However, instead of applying
fuzzy operators, we propose a unified distance function to convert fuzzy numbers into
crisp numbers, by which we avoid the deficiencies of the aforementioned methods. More
importantly, we do not need any arithmetic operation among the fuzzy numbers. Last but
not the least, since the proposed method does not need any arithmetic operations among
fuzzy numbers, it reduces the computational time extensively, which makes it possible to
be implemented into large networks.
The remainder of this paper is structured as follows. The remainder of this paper is

organized as follows. In Section 2, the fuzzy numbers are briefly introduced. In Section 3,
we present the proposed method. In Section 4, we present the experimental results and
analysis. Finally, we give our conclusions in Section 5.

2. Preliminaries. In 1965, the notion of fuzzy sets was first introduced by Zadeh [13],
providing a natural way of dealing with problems in which the source of imprecision is
the absence of sharply defined criterion of class membership. Fuzzy set is provided by the
definitions below.

Definition 2.1. A fuzzy set Ã defined on a universe X may be given as:

Ã :=
{〈

x, µÃ (x)
〉
|x ∈ X

}
,

where µA : X → [0, 1] is the membership function A. The membership value µA (x) de-
scribes the degree of belongingness of x ∈ X in A.

Definition 2.2. A triangular fuzzy number Ã can be defined by a triplet (a, b, c), where
the membership can be determined as follows

µ
Ã
(x) :=





0, x < a,
x−a
b−a

, a ≤ x ≤ b,
c−x
c−b

, b ≤ x ≤ c,
0, x > c.

(1)

A triangular fuzzy number Ã = (a, b, c) is shown diagrammatically in Figure 1(a).
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Figure 1. Two kinds of fuzzy numbers

Definition 2.3. A trapezoidal fuzzy number Ã can be defined as Ã = (a1, a2, a3, a4), where
the membership can be determined as follows

µ
Ã
(x) :=






0, x < a1,
x−a1
a2−a1

, a1 ≤ x ≤ a2,

1, a2 ≤ x ≤ a3,
a4−x
a4−a3

, a3 ≤ x ≤ a4,

0, x > c.

(2)

A trapezoidal fuzzy number Ã = (a1, a2, a3, a4) is shown diagrammatically in Figure
1(b).

Definition 2.4. Iff L (x) = R (x) = e−x2

, with x ∈ R, then x is a normal fuzzy number
that is shown by (m, σ) and the corresponding membership function is defined to be:

µ
Ã
(x) := e−(

x−m

σ
)
2

x ∈ R,

where m is the mean and σ is the standard deviation. A normal fuzzy number is shown
in Figure 2.
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Figure 2. A normal fuzzy number
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Definition 2.5. α-cuts for trapezoidal fuzzy numbers: Suppose ã = (a1, a2, a3, a4). An
α-cuts for ã, ãα, is calculated as:

α := x−a1
a2−a1

α := a4−x
a4−a3

}
⇒ ãα :=





ãLα := x := (a2 − a1)α + a1,
0 < α ≤ 1,

ãRα := x := a4 − (a4 − a3)α,
(3)

where ãα
[
ãLα, ã

R
α

]
is the corresponding α-cut, ãLα denotes the lower bound of α-cuts for

trapezoidal fuzzy numbers, and ãRα represents the upper bound for α-cuts for trapezoidal
fuzzy numbers. The cuts for triangular fuzzy numbers can be obtained by using the above
equations considering a2 = a3.

Definition 2.6. α-cuts for normal fuzzy numbers: Assume ã = (m, σ) is a normal fuzzy
number, then ãα is computed as:

α = e−(
x−m

σ
)
2

α = e−(
x−m

σ
)
2

}
⇒ ãα =





ãLα = x = m− σ
√
−ln (α),

0 < α ≤ 1.

ãRα = x = m+ σ
√
−ln (α),

(4)

3. Proposed Method. In this section, a function is defined to convert the fuzzy numbers
into crisp numbers. Then we develop a Dijkstra algorithm to find the shortest path in
uncertain environment.

3.1. Distance of fuzzy numbers. Consider the fuzzy min operator between any two
fuzzy numbers. Suppose we have two trapezoidal fuzzy numbers as below:

ã = (a1, a2, a3, a4) , b̃ = (b1, b2, b3, b4)

According to the fuzzy operator defined in [14], we have:

Min value
(
ã, b̃

)
= (min (a1, b1) ,min (a2, b2) ,min (a3, b3) ,min (a4, b4))

However, in many cases, the above fuzzy min operator might result in a fuzzy number
distinct from both of them. For instance, given two fuzzy numbers ã = (10, 20, 25, 31) and

b̃ = (12, 18, 29, 31), after applying the fuzzy min operator, we have Min value
(
ã, b̃

)
=

(10, 18, 25, 31). As observed, the result is different from both ã and b̃. To get rid of the
drawback of this method, we define a distance function [15].

Definition 3.1. Dp,q-distance: Given two fuzzy numbers ã and b̃, then the Dp,q-distance
between them can be defined as follows:

Dp,q

(
ã, b̃

)
:=





[
(1− q)

∫
1

0
|a−α − b−α |

p
dα + q

∫
1

0
|a+α − b+α |

p
dα

] 1
p

, p <∞

(1− q) sup
0<α≤1

|a−α − b−α |+ q inf
0<α≤1

|a+α − b+α | , p =∞
(5)

where the first parameter p denotes the priority weight attributed to the end points of the
support; for instance, the a+α and a−α of the fuzzy numbers. Iff the expert has no preference,
Dp, 1

2
is recommended. The second parameter q determines the analytical properties of Dp,q.

For two fuzzy numbers ã and b̃, the Dp,q can be approximately proportional to:

Dp,q

(
ã, b̃

)
:=

[
(1− q)

n∑

i=1

∣∣a−α − b−α
∣∣p + q

n∑

i=1

∣∣a+α − b+α
∣∣p
] 1

p

. (6)

Iff q = 1/2, p = 2, then (6) can be turned into:

Dp,q

(
ã, b̃

)
:=

√√√√1

2

n∑

i=1

|a−α − b−α |
2 +

1

2

n∑

i=1

|a+α − b+α |
2 . (7)
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Herein, to express the fuzzy numbers using crisp numbers, we use the distance from the

fuzzy numbers to MṼ = (0, 0, · · · , 0) as the true value of fuzzy number. Since the lower
bound and upper bound α-cuts are 0 and 1, we divide the α-interval into n subintervals
by letting α0 = 0, αi = αi−1 + ∆αi, where ∆αi = 1

n
, i = 1, 2 · · · , n. In the case of

normal fuzzy numbers, it is not reasonable to set α equal to 0. To deal with normal fuzzy
numbers, we let α ∈ (0, 1]. Based on Equations (3) and (4), we compute the α-cuts for
fuzzy numbers. Afterwards, by applying the operations defined in Equation (7), the fuzzy
numbers can be converted into crisp numbers.

3.2. Fuzzy Dijkstra algorithm. Since we are capable of transforming all the fuzzy
numbers into crisp numbers, by implementing the most commonly used Dijkstra algorith-
m, we are able to find the shortest path in the network. In general, Dijkstra algorithm
assigns initial values to each node: set it to zero for the starting node and to infinity for
all the other nodes. Next, the algorithm identifies a node u from the unvisited node set Q
that has the minimum distance to the source node. Afterwards, node u is removed from
the unvisited set Q. For the current node u, it considers all of its unvisited neighbors,
calculates their tentative distances, and compares the newly calculated tentative distance
to the current assigned value and chooses the smaller one. The process continues until
the candidate node is the sink node t. The flow chart of the proposed method is shown
in Algorithm 1.

Algorithm 1: Dijkstra Algorithm for Fuzzy Shortest Path Problem

Data: G = (L, V, E, s, t), where L is an adjacency matrix of graph G, V is the set of
nodes, E is the set of edges, s is the starting node, and t is the ending node.

Result: The shortest path from s to t.
1 S ← ∅
2 Q← V
3 last = s

4 dist[last] = 0
66 while last 6= t do
88 Converting fuzzy numbers into crisp numbers using Equation (7);

1010 u ← vertex in Q with min dist[u];

1212 last← u;
1414 S = S ∪ u

1616 for all u ∈ neighbors[u] and u /∈ S do

1818 if dist[v] > dist[u] + d[u, v] then
19 dist[v] = dist[u] + d[u, v]

4. Numerical Example. In this section, a numerical example is used to demonstrate
the efficiency of the proposed method. Consider the network shown in Figure 3, there
are 11 nodes and 25 edges in the network. Each edge has a different edge length from
each other, which are represented by two different types of fuzzy numbers (normal fuzzy
numbers and triangular fuzzy numbers). The specific characteristic of each link is shown
in Table 1.

Now, the shortest path between nodes 1 and 11 needs to be found. After implementing
the developed fuzzy Dijkstra algorithm, we find the shortest path from node 1 to node 11:
1 → 3 → 8 → 7 → 11. The result is also compared with the result in [16]. In [16], they
developed a genetic algorithm to find the shortest path by four steps: path representation,
crossover, mutation, and strategy analysis. However, in this algorithm, a lot of generated
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Figure 3. A network with 11 nodes

Table 1. The fuzzy edge lengths for the network shown in Figure 3

Arc Fuzzy number Arc Fuzzy number Arc Fuzzy number

(1,2) (800,820,840) (3,5) (730,748,870) (8,4) (710,730,833)
(1,3) (35,11) (3,8) (42,14) (8,7) (230,242,355)
(1,6) (650,677,783) (4,5) (190,199,310) (9,7) (120,130,250)
(1,9) (290,300,350) (4,6) (310,340,360) (9,8) (13,4)
(1,10) (420,450,570) (4,11) (71,23) (9,10) (23,7)
(2,3) (180,186,293) (5,6) (610,660,790) (10,7) (330,342,450)
(2,5) (495,510,625) (6,11) (23,7) (10,11) (125,41)
(2,9) (90,30) (7,6) (390,410,540) (3,4) (650,667,983)
(7,11) (45,15)

populations have been discarded because they cannot constitute a feasible path. Hence,
it takes a considerable amount of time to generate feasible solutions. In addition, since
crossover and mutation might result in infeasible solutions, additional operations are
required to adjust the infeasible solutions, which makes their method limited to networks
with small size. The toy problem with only 4 nodes is solid proof of this deficiency.
However, in the proposed method, we do not need any additional operations to process
the found path. Moreover, the proposed method can account for the fuzzy numbers in
different types. As shown in Table 1, the arc length is represented by different fuzzy
numbers, e.g., normal fuzzy number, triangular fuzzy numbers. In terms of accuracy, the
proposed method obtains the same shortest path to connect node 1 with 11.

5. Conclusion. In this paper, we investigate the shortest path problem under uncertain
environment, in which the link cost is represented by different types of fuzzy numbers. A
distance function is defined to transform the fuzzy numbers into crisp numbers. After-
wards, Dijkstra algorithm is used to find the shortest path in the graph. The advantage
of the proposed method is that it does not require any arithmetic operators among fuzzy
numbers, which makes it capable of processing different types of fuzzy numbers. Future
researches can be carried out in the following directions. First of all, in the traffic network,
since the link cost is a function of link flow, how to relate the link cost uncertainty with
the link flow is worthy to investigate. Secondly, when passengers choose the optimal path,
they usually consider several criteria, e.g., travel time, cost, safety. Hence, it is necessary
to develop an algorithm to address the multi-criteria network optimization in the presence
of uncertainty.
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[2] D. C. Paraskevopoulos, T. Bektaş, T. G. Crainic and C. N. Potts, A cycle-based evolutionary algo-
rithm for the fixed-charge capacitated multi-commodity network design problem, European Journal
of Operational Research, vol.253, no.2, pp.265-279, 2016.

[3] D. P. Bertsekas, A simple and fast label correcting algorithm for shortest paths, Networks, vol.23,
no.8, pp.703-709, 1993.

[4] M. Iori, S. Martello and D. Pretolani, An aggregate label setting policy for the multi-objective
shortest path problem, European Journal of Operational Research, vol.207, no.3, pp.1489-1496, 2010.

[5] E. W. Dijkstra, A note on two problems in connexion with graphs, Numerische Mathematik, vol.1,
no.1, pp.269-271, 1959.

[6] C. Yin and H. Wang, Developed Dijkstra shortest path search algorithm and simulation, Interna-
tional Conference on Computer Design and Applications, 2010.

[7] M. DellOrco, M. Marinelli and M. A. Silgu, Bee colony optimization for innovative travel time esti-
mation, based on a mesoscopic traffic assignment model, Transportation Research Part C: Emerging
Technologies, vol.66, pp.48-60, 2016.

[8] S. Yang, H. Cheng and F. Wang, Genetic algorithms with immigrants and memory schemes for
dynamic shortest path routing problems in mobile ad hoc networks, IEEE Trans. Systems, Man,
and Cybernetics, Part C: Applications and Reviews, vol.40, no.1, pp.52-63, 2010.

[9] Y. Deng, Y. Chen, Y. Zhang and S. Mahadevan, Fuzzy Dijkstra algorithm for shortest path problem
under uncertain environment, Applied Soft Computing, vol.12, no.3, pp.1231-1237, 2012.

[10] M. Dotoli, N. Epicoco and M. Falagario, A fuzzy technique for supply chain network design with
quantity discounts, International Journal of Production Research, pp.1-23, 2016.

[11] S. Okada and T. Soper, A shortest path problem on a network with fuzzy arc lengths, Fuzzy Sets
and Systems, vol.109, no.1, pp.129-140, 2000.

[12] J.-Y. Kung and T.-N. Chuang, The shortest path problem with discrete fuzzy arc lengths, Computers
& Mathematics with Applications, vol.49, no.2, pp.263-270, 2005.

[13] L. A. Zadeh, Fuzzy sets, Information and Control, vol.8, no.3, pp.338-353, 1965.
[14] K.-P. Lin, W. Wen, C.-C. Chou, C.-H. Jen and K.-C. Hung, Applying fuzzy gert with approximate

fuzzy arithmetic based on the weakest t-norm operations to evaluate repairable reliability, Applied
Mathematical Modelling, vol.35, no.11, pp.5314-5325, 2011.

[15] B. S. Gildeh and D. Gien, La distance-dp, q et le cofficient de corrélation entre deux variables
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