
ICIC Express Letters
Part B: Applications ICIC International c©2017 ISSN 2185-2766
Volume 8, Number 12, December 2017 pp. 1663–1670

RESEARCH ON DYNAMIC LOAD BALANCING STRATEGY

BASED ON JIAOZHOU BAY WATER QUALITY

FORECASTING SYSTEM

Weijian Huang, Zenglian Jiao, Yuanbin Han and Wei Du

School of Information and Electrical Engineering
Hebei University of Engineering

No. 199, Guangming Rd., Handan 056038, P. R. China
huangweijian0808@sina.com

Received June 2017; accepted August 2017

Abstract. At present, the parallel calculation of Jiaozhou Bay water quality forecasting
system is mainly realized by MPI (Message Passing Interface). Because the existing par-
allel methods for the Jiaozhou Bay water quality forecasting parallel system (JBWQFPS)
mostly use the equipartition of the grid, the actual amount of calculation is determined
by the wet and dry separation method on the grid. Therefore, the sharing of the grids
does not guarantee the equipartition of the computational load in the actual calculation,
leading to serious computational imbalance problems. In view of this problem, this paper
proposes an automatic redistribution load balancing scheme (ARLBS). Compared with
the situation before using load balancing optimization, parallel acceleration ratio has been
significantly improved, and the parallel efficiency is up to 53.68%. The results show that
the ARLBS is effective in the field of ocean numerical simulation.
Keywords: Load balancing, Parallel computing, Water quality forecasting system,
Jiaozhou Bay

1. Introduction. At present, the water quality forecasting system is mostly compiled by
serial programs. In practical applications, the calculation efficiency is often low, resulting
in some limitations. With the application of various parallel technologies, the efficiency
of the prediction system has been greatly improved. Since the JBWQFPS adopts the
original automatic assignment of the grid nodes [1,2], which divides computing grid ac-
cording to coordinate points, the size of the grid is divided into different parts, and there
is often a load imbalance problem, which results in the waste of the idle nodes and the
inefficiency of the operation. The key to MPI parallel computing is load distribution. If
the load distribution is reasonable and the load between nodes is balanced, it can give full
play to the performance of each node and the parallel efficiency is higher. There are three
strategies for dynamic load balancing: distributed, centralized, and mixed/hierarchical.
Each strategy has its own representative programs. For example, distributed strategy
mainly has diffusion method, gradient method (GM) and other methods [3-6]. However,
the implementation of each dynamic load balancing scheme needs to consider complex
hardware performance, including: CPU, memory, etc. The requirements for the parallel
programmers are higher, so it is difficult to implement. And there are load imbalance
problems in the implementation of MPI parallelization mentioned in document [1,2]. In
order to solve the problems mentioned above, this paper takes JBWQFPS as an example
and implements a novel dynamic load balancing scheme – ARLBS to reduce the dis-
tribution imbalance of node computing tasks and increase the performance of parallel
computing.

1663



1664 W. HUANG, Z. JIAO, Y. HAN AND W. DU

2. Related Work.

2.1. Introduction to MPI parallel programming. MPI is one of the standards for
messaging interfaces for developing parallel programs based on message passing [3]. The
general execution flow of the MPI program is that the initialization function MPI INIT
must be executed before the process calls the MPI process. Then call the MPI COMM SI-
ZE function to get the default group size. And then call MPI COMM RA NK to get
the logical number of the current process in the default group, through this number to
distinguish between the different processes in the group, each process can perform different
tasks. Then, call MPI SEND and MPI RECV to exchange information with other nodes,
so as to realize parallel and cooperation among processes. Finally, when the process
has completed all operations and no longer needs MPI process, call MPI FINALIZE to
eliminate the MPI environment.

2.2. Parallel calculation method of fluid. The model of Jiaozhou Bay water quality
forecasting system is based on the C grid [1], which mainly adopts 3D coordinate system.
The system divides the monitored sea area into a three-dimensional grid system composed
of i ∗ j ∗ k grid points. Combined with the horizontal resolution and the nested hydrody-
namic calculation section of the predicted sea area, the actual grid number suitable for
Jiaozhou Bay is calculated to be 159 ∗ 185 ∗ 5.

The Jiaozhou Bay water quality forecasting system includes the establishment of the
three-dimensional water quality model with nutrient salt, chemical oxygen demand and
dissolved oxygen as forecasting variables [2]. The system considers the biological pro-
cesses such as sedimentation, sediment material flux, and exchange material with foreign
matter. In 3D coordinates, 12 variables such as nitrogen, phosphorus, zooplankton, phyto-
plankton, nitrate, nitrite, ammonium salt, phosphate, silicate, various debris, and various
chemical oxygen demand in water are under quantitative monitoring, including the first,
the second, the third, the fourth chemical change separately, as well as submarine flux
calculation, chemical changes and calculation of various open boundary conditions and
so on. At the same time, the diffusion of various substances in water is divided into two
directions, horizontal and vertical. The calculation of vertical diffusion does not require
data transfer, while the horizontal diffusion requires the calculation data of adjacent grid
points. So the flow field is divided into multiple calculation regions according to the
vertical direction, and a new calculation grid is generated for each block. At the same
time, the mesh on the common boundary of each region should be coincident, so that the
continuity of material quantification calculation can be guaranteed at the mesh boundary.
Multiple computing areas exchange information after a calculation, and the next round
is calculated until the prediction task is completed.

3. Research on ARLBS.

3.1. Statistics and analysis of the time consumption and the task amount of

the nodes. The execution time of the program is recorded by the CPU TIME method,
and the time spent on each hour prediction of the JBWQFPS is recorded in the log file.
And ultimately derive the time-varying data of each node on processing the 48-hour data
of the parallel system. As shown in Figure 1, the time that the node p3 consumed is the
most. The consumption time of the node p1 is close to that of p2, and the computing
time of p4 is the least. That is when the node p4 completes the calculation task, it is
necessary to wait for the completion of the task on others, while p4 is in idle state during
which time. The idle time is the difference between the time consumed by the p3 and the
p4 in performing their respective computational tasks: Tp3 − Tp4. In parallel computing,
time efficiency is measured by the longest time among nodes, that is, the time consumed
by p3.



ICIC EXPRESS LETTERS, PART B: APPLICATIONS, VOL.8, NO.12, 2017 1665

Figure 1. Forecast time versus time consumption

Figure 2. Diagram of the distribution of calculate points in the grid

By studying the process control points in the program, it is determined that the main
control variable in the program is wet mask. Then the distribution information of com-
puting points in two-dimensional coordinates is derived. According to the coordinate
information of the calculation points, the sketch map of the distribution of the points
involved in the calculation in the grid is drawn, as shown in Figure 2.

It can be seen in Figure 2 that the distribution of the computational tasks in the whole
region is an irregular shape. With the increase of y value, the integral area of the whole
calculation area is non-linear.

Through the analysis and study, the distribution information of the main calculation
points in the system is found and the tasks that need to deal with by each node to simulate
the hourly calculation are plotted in Figure 3.



1666 W. HUANG, Z. JIAO, Y. HAN AND W. DU

Figure 3. Comparison of the number of tasks per hour on each node

In combination with Figures 1, 2 and 3, it is found that the main factors causing
the unbalanced calculation of the nodes are that the number of effective grid points is
significantly different among the nodes. The number of grid points on p3 is obviously
higher than that on others, while that on p4 is far less than that on other nodes, which
leads to a serious imbalance between nodes. And the node with small load completes the
calculation task ahead of time and into the idle state, while the overloaded node is still
in the busy state, which causes the waste of computing resources of the idle node and
unnecessary time overhead. The execution time of each process is directly proportional
to the calculation scale of nodes. At the same time, the task quantity alternates at
different time points due to the impact of the tide. However, the main factor affecting
the computing time is the number of grid points involved in the calculation, that is, the
area between the calculated point distribution and the x, y axis.

The entity waters of Jiaozhou Bay are complex and irregular in shape; thus the whole
area is divided into several blocks. When divided into four block regions, the size of each
grid block is shown in Table 1.

Table 1. Distribution table of the number of calculated units

Block-number Number of units Ratio (%)
1 3647 27.96
2 3406 26.13
3 4603 35.30
4 1384 10.61

For the original load distribution scheme, it can be seen in Table 1 that when using 4
processors, the load of two processors is relatively balanced, in addition to two processors,
one for 10.61%, the other 35.30%, which causes the entire load to be unbalanced, resulting
in a large delay in the calculation completion time and the total calculation time is longer.

3.2. Design of ARLBS. Load distribution is the key to multi-block parallel computing
[7]. When the number of processors is more than that of grid blocks, each processor
allocates one grid task, which is a relatively simple distribution scheme. However, it



ICIC EXPRESS LETTERS, PART B: APPLICATIONS, VOL.8, NO.12, 2017 1667

cannot play the performance of multi-node cluster system. And it is a relatively inefficient
scheme [8]. At the same time, the number of computing units in each grid is not the
same, and some are even very different; thus this scheme can cause serious load imbalance
and affect the efficiency of parallel computing [9]. To solve this problem, an ARLBS is
proposed in this paper.

Traditionally, the system automatically allocates grid blocks to the idle processor. Since
the large difference in the size of each grid block, the load is often uneven. So the ARLBS
is to re-divide the grid area to achieve the purpose of load balancing.

The process of the ARLBS is: To run the program according to the traditional scheme
and analyze the relevant data collected. Then automatically write the best task alloca-
tion program to the source program to determine the size of the load on each processor
according to the number of processors and the grid data. In computational domain, the
integration is performed in the Y direction and the computational grids are evenly dis-
tributed to each computational node, through which the entire grid area is re-segmented
into new mesh blocks, and then they are automatically distributed. In this way, the load
can be better allocated to each processor. In practical applications, the water quality
forecasting system can run continuously. In order to make timely automatic adjustment,
it will automatically collect the data to produce the latest load balancing scheme.

4. Experiment and Analysis.

4.1. Computing environment. The simulation environment used in this paper is: one
workstation server equipped with the AMD Opteron(tm) Processor 6433 with sixteen
cores, and 16GB of memory, system for CentOS Linux release 7.2.1511 (Core) operating
system, MPI parallel environment, the compiler environment for the MPIF90 ver.11.1;
gcc ver.4.8.5, and the use of FORTRAN language programming.

4.2. Application of ARLBS. In view of the above situation, in order to further bal-
ance the computational tasks of each computing node, this paper adopts the ARLBS to
reallocate the task.

As shown in Figure 4, the division ranges are set by x and y axes and each scale of
which for one unit. By moving the position of the y, the area of the effective calculation

Figure 4. Schematic diagram of automatic re-partitioning



1668 W. HUANG, Z. JIAO, Y. HAN AND W. DU

area is calculated by the integrating in the y direction. And when the area is less than
1/4 of the total area and it will be larger than 1/4 if y moves by one scale, it is denoted
as y1; then start from y1, in turn find the value of y2 and y3 by repeating the above
procedure; for the sake of computational integrity, y4 takes the maximum value of y.

4.3. Experimental results and analysis. Run time is one of the important indexes to
measure the performance of parallel programs. A parallel arithmetic program is usually
executed by multiple processes. Each process runs on one computing node, and the
execution time of the parallel program is determined by the longest time. In order to
better reflect the efficiency of parallel computing, speedup and parallel efficiency are used
as the two evaluation indexes. They are defined as:

Sp =
tp1

tp2

, Ep =
Sp

p
(1)

Sp is the speedup of the parallel calculation, Ep is the parallel efficiency, p is the
number of processors used in the parallel calculation, tp1 is the time consumed to perform
the solution using p processors before using the load optimization, and tp2 is the time
after optimization.

At the end of the experiment, the experimental data are processed. As shown in Figure
5, the calculation time of the four nodes is relatively close, and it saves nearly 100s relative
to that before the load balancing.

Figure 5. Forecast time versus time consumption and task quantity of
each process

After applying the ARLBS, the number of tasks for each of the 4 processes and the
percentage of each process’s task in total computation are counted, as shown in Table 2.

As it can be seen in Table 2, the workload between processes is basically balanced, so
the load balancing scheme is feasible and effective.

According to the above scheme, performance benchmarks are performed on system
before and after using ARLBS at the case of different nodes. Respectively, to run four
times in each case of using 2, 4, 8 computing nodes and to calculate the average time
of four times as the final result. Through the statistics of performance changes in the



ICIC EXPRESS LETTERS, PART B: APPLICATIONS, VOL.8, NO.12, 2017 1669

Table 2. Distribution table of the calculated units after load balancing

Block-number Number of units Ratio (%)
1 3258 24.98
2 3196 24.52
3 3229 24.76
4 3357 25.74

Table 3. Speedup and parallel efficiency of JBWQFPS

2CPU 4CPU 8CPU
Calculation time before load optimization (s) 990.89 620.38 431.68
Calculation time after load optimization (s) 922.98 539.13 304.47

Speedup ratio 1.074 1.151 1.418
Parallel efficiency 53.68% 28.77% 17.72%

Figure 6. Comparison graph of acceleration ratio trends

case of using different number of nodes, the speedup ratio and parallel efficiency data are
obtained before and after load balancing, as shown in Table 3.

In order to analyze the acceleration effect better, the acceleration ratio trend chart
before and after using the optimization is plotted, as shown in Figure 6.

The results of the performance benchmark in Figure 6 show that the time consumption
of the system before load balancing is relatively large and the load imbalance problem is
more serious when the number of processes exceeds four. Although the parallel procedures
still remain accelerating with the increase of the process number, the acceleration effect
tends to be stable. The reason for this phenomenon is that the number of transmission
data is increased and the load imbalance between nodes is more prominent. After the load
balancing optimization, the acceleration efficiency eventually tends to be smooth with the



1670 W. HUANG, Z. JIAO, Y. HAN AND W. DU

increase of the node, which is caused by the message transmission between nodes, but the
occurrence of this state is delayed.

Through the comparison of the operation data of the system before and after load
balancing, it is found that the load of each node is more balanced after using ARLBS and
the calculation time is significantly reduced. And also the speed of numerical simulation
and the efficiency of the system are improved.

5. Conclusions. Parallel computers are becoming more and more important in the field
of scientific research, and the requirements for their performance optimization will be
strengthened with the high requirements of business oriented numerical simulation. In
order to solve the problem of load imbalance in the task allocation of JBWQFPS, the
paper analyzed the load situation by using the time data generated by the first run of
the system. Then, the spatial distribution of the computational grid is reallocated based
on the actual computational tasks, and each group of tasks is automatically assigned to
multiple processes. The feasibility of the ARLBS is illustrated by the experimental data.
The purpose of load balancing has been achieved by using the approach of this paper; it
has a certain degree of impact to the performance optimization in using parallel computer
and shortens the time of numerical simulation.

Acknowledgment. This work is supported by the National Natural Science Foundation
of China (No. 51509066), the National Marine Public Welfare Industry Research Special
of China (No. 201205018)

REFERENCES

[1] C. Li, Application of Mixed Parallel Computing in Marine Water Quality Forecasting System, Master
Thesis, Hebei University of Engineering, 2014.

[2] W. Du, P. Niu and W. Huang, Application of MPI technology in Jiaozhou Bay water quality fore-
casting system, Computer Engineering and Design, vol.34, no.6, pp.2257-2261, 2013.

[3] G. Utrera, J. Corbalán and J. Labarta, Dynamic load balancing in MPI jobs, High-Performance
Computing, pp.117-129, 2008.

[4] S. Nian and L. Guangmin, Dynamic load balancing algorithm for MPI parallel computing, Interna-
tional Conference on New Trends in Information and Service Science, pp.95-99, 2009.

[5] V. Kale and W. Gropp, Load balancing for regular meshes on SMPs with MPI, EuroMPI, vol.10,
pp.229-238, 2010.

[6] H. Liu, Multi-block structured grid dynamic load balancing method, Proc. of the 22nd Annual
Conference of Beijing Institute of Mechanics, 2016.

[7] M. Rietmann, D. Peter, O. Schenk et al., Load-balanced local time stepping for large-scale wave
propagation, International Parallel and Distributed Processing Symposium (IPDPS), pp.925-935,
2015.

[8] G. Martin, M. C. Marinescu, D. E. Singh et al., FLEX-MPI: An MPI extension for supporting
dynamic load balancing on heterogeneous non-dedicated systems, European Conference on Parallel
Processing, pp.138-149, 2013.

[9] M. Bhandarkar, L. V. Kalé, E. de Sturler et al., Adaptive load balancing for MPI programs, Inter-
national Conference on Computational Science, pp.108-117, 2001.


