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Abstract. For the low predictive accuracy and poor stability of SVM incremental learn-
ing, a modeling method of multi-scale evolutionary v-support vector machine (ME-v-
SVM) is proposed. Firstly, the global optimal model with multi-scale v-SVM is obtained
by solving multi-scale quadratic programming problem, which can approximate the uneven
distributed samples on multiple scales and overcome the poor predictive ability. Secondly,
an evolutionary method based on the SVM incremental learning process is proposed, which
solves the “Explosion” problem of training sample number caused by new samples con-
stantly joining into training set and improves the stability of the SVM incremental learn-
ing process. Finally, the ME-v-SVM method is applied to the soft-measurement of the
ethylene product concentration. The experimental results show that the proposed method
has a better model performance than SVM and M-v-SVM method.
Keywords: Multi-scale learning, Evolutionary SVM, Ethylene product concentration,
Soft-measurement

1. Introduction. Ethylene is an important raw material in chemical industry and its
concentration directly determines the quality of subsequent chemical products. However,
in practical production, the concentration of ethylene product cannot be measured directly
by the hardware sensor. It is usually tested offline in the laboratory. Unfortunately, of-
fline analysis is too costly and often has 2-4 hours time-delay [1], which cannot meet the
requirements of real-time control. An accurate and stable soft-measurement method [2]
is required to enhance productive efficiency and reduce productive cost. Obviously, the
traditional mechanism model is difficult to adapt the strong nonlinear process. Hence,
many soft-measurement methods based on data-driven intelligent algorithm, such as ge-
netic algorithm [3], neural network [4] and other intelligent algorithms [5], are proposed.
However, these methods exceedingly depend on data, which cannot obtain satisfactory
effect using limited samples.

Support vector machine (SVM) [6] is a machine learning algorithm based on Vapnik’s
structural risk minimization theory. It is one of the most popular methods in modeling
research and has been successfully applied in practical processes. However, the standard
SVM still has some bottlenecks. For example, the parameter ε used to control regression
accuracy is hard to select. v-SVM [7] overcomes this defects because the parameter v is
used to control the ε tube which simplifies the process of setting ε.

Above-mentioned SVM models based on single kernel are hard to get a satisfactory
regression precision for predicting the uneven distribution samples. In [8], multi-scale
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learning method was proposed to adapt the uneven distribution sample utilizing a liner
combination of kernels with different widths, which enhances the approximate ability of
SVM. The multi-scale kernel SVM [9,10] has been successfully applied to adaptive time
sequence predictive question. Because the model can eliminate the regressive residuals on
different scales, it has high predictive precision. Although the multi-scale kernel method
can effectively improve model accuracy, it still belongs to offline modeling strategy without
self-learning ability. The off-line modeling is very difficult to adapt the complex changes of
working conditions. Some incremental learning methods [11] were proposed to obtain the
constant change of model parameters by the variation of prediction error or the features
of new samples. However, when new samples are continuously joined into the training
set, model training speed will be badly affected.

In this paper, a new SVM with the combination of SVM incremental learning and multi-
scale theory is proposed, called multi-scale evolutionary v-support vector machine (ME-
v-SVM). Firstly, a multi-scale v-SVM (M-v-SVM) regression model is obtained by solving
quadratic programming (QP) problem on different scales rather than linear combination
of the different kernel scales. Secondly, a new “evolution” principle is proposed based on
SVM incremental learning process. In statistics, the sample similarity is generally judged
by Euclidean distance [12] and angle [13]. For SVM incremental learning process, the old
sample most similar to new sample is replaced by the new sample. This method keeps
quantity of training sample constant and avoids the unstable learning speed.

2. Multi-Scale Evolutionary v-SVM.

2.1. Multi-scale v-support vector machine. A new support vector machine based
on the multi-scale learning method is proposed. Taking the double-scale model as the
example, the steps of the proposed algorithm are as follows.

Firstly, for a given training set {(xi, yi)i=1,2,...,n}, the samples in smooth region are fitted
using large-scale kernel. The large-scale regression model is described as follows:

f1(x) = w1K1(x, xi) + b1 (1)

where K1(x, xi) is large-scale kernel, and xi is a sample of the training set x.
Secondly, the samples in the region of severe changes are fitted using small-scale kernel.

The objective is {(xi, yi) − f1(xi)}i=1,2,...,n. The small-scale regression model is expressed
as:

f2(x) = w2K2(x, xi) + b2 (2)

Finally, the double-scale model is viewed as:

f(x) = w1K1(x, xi) + w2K2(x, xi) + b1 + b2 (3)

Based on the multi-scale learning idea and SVM principle, the solution of Equation (3)
is obtained by solving the following optimization problem.

min
1

2
∥w1∥2 +

1

2
∥w1∥2 +

C1

n

n∑
i=1

(ξ1i + ξ∗1i) +
C2

n

n∑
i=1

(ξ2i + ξ∗2i) + C1v1ε1 + C2v2ε2 (4)

s.t.


w1ϕ1(xi) + b1 − yi ≤ ε1 + ξ1i

yi − w1ϕ1(xi) − b1 ≤ ε1 + ξ∗1i

w2ϕ2(xi) + b2 − (yi − w1ϕ1(xi) − b1) ≤ ε2 + ξ2i

(yi − w1ϕ1(xi) − b1) − w2ϕ2(xi) − b2 ≤ ε2 + ξ∗2i

(5)

where C1 and C2 are penalty factors; ξ1i, ξ∗1i, ξ2i, ξ∗2i are slack variables; ϕ(x) is the
nonlinear mapping about input data to high-dimensional feature space. v1, v2, ε1, ε2 are
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the parameters in scales 1 and 2 respectively. The Lagrange function of Equation (4) is
structured as follows:

min L =
1

2
∥w1∥2 +

1

2
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C1

n

n∑
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α∗
1i(ε1 + ξ∗1i − yi + w1ϕ1(xi) + b1)

−
n∑

i=1

α2i(ε2 + ξ2i − (yi − w1ϕ1(xi) − b1) − w2ϕ2(xi) − b2)

−
n∑

i=1

α∗
2i(ε2 + ξ∗2i + w2ϕ2(xi) + b2 − (yi − w1ϕ1(xi) − b1))

(6)

where α∗
1i and α∗

2i are Lagrange multiplier vectors. By the Karush-Kuhn-Tucker (KKT)
condition, the partial derivatives with regard to w1, w2, b1, b2, ε1, ε2, ξ∗1i, ξ∗2i are calculated
as:

∂L

∂w1

= w1 +
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Substituting the aforementioned derivative equations into Equation (6), we obtain the
dual question of Equation (4) as follows:

max W =
n∑

i=1

yi (α
∗
1i − α1i + α∗

2i − α2i) −
1

2
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(α∗
1i − α1i + a∗

2i − α2i) = 0,
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2i) = 0

0 ≤ α∗
1i ≤ C1
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(13)

In the dual Equation (12), the function K(xi, xj) is the kernel matrix which is equivalent
to the dot product < ϕ(xi), ϕ(xj) >. The radial basis function (RBF) is selected as kernel
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function. The final regression model f(x) of double-scale v-SVM depends on the Lagrange
multipliers a∗

1i and a∗
2i as follows.

f(x) =
n∑

i=1

(α∗
1i − α1i + α∗

2i − α2i) K1(x, xi) +
n∑

i=1

(α∗
2i − α2i)K2(x, xi) + b (14)

b =
1

n

n∑
i=1

[yi − f(xi)] (15)

It is not hard to see that the regression model (14) is not the simple liner combination
on different scales (kernel width). Multi-scale learning models can be extended on the
basis of aforementioned derivation.

2.2. An evolutionary method based on the SVM incremental learning pro-
cess. This section presents a kind of “evolution” incremental learning method which
can improve the self-learning ability of multi-scale v-SVM. To keep the training sample
size constant, the idea of evolution is incorporated to SVM incremental learning process.
When the new sample is added to training set, old sample will be replaced by the new
sample. The process can be described as follows.

Given a training set: N = {(xij, yij)}, i = 1, 2, . . . , n, j = 1, 2, . . . , t, where n is sample
number and t is the dimensional character of sample. For example, there are two samples
xk = (xk1, xk2, . . . , xkt) and xl = (xl1, xl2, . . . , xlt), k ̸= l. The difference of distance
variance can be estimated by Euclidean distance as follows.

dist(xk, xl) =

√√√√ t∑
j=1

(xkj − xlj) (16)

where xkj is the jth character of xk and xlj the jth character of xl.
The angle variance is computed by cosine similarity:

sim(xk, xl) = cos θ =
xk · xl

∥xk∥ · ∥xl∥
(17)

When the new sample was added to training set, the distance between new sample and
training samples is calculated:

dist(c,Ni) =

√√√√ t∑
j=1

(cj − Nij)2 (18)

where c is the new sample, N the training set. According to Euclidean distance, these
training samples close to c may be a higher similarity with c. Hence, we define Equation
(19) as follows:

dist(c,Ni) < η (19)

where η is potential factor whose value could determine the size of potential set. The
larger η means a greater potential size of the set, and vice-versa. The training samples
corresponding to Equation (19) are defined as potential set {Pi}i=1,2,...,g in which Pi is
potential vector. The angel similarity between c and Pi is analyzed as follows.

sim(c, Pi) =
c · Pi

∥c∥ · ∥Pi∥
(20)

sim(c, PM) is as the maximum of {sim(c, Pi)}:
sim(c, PM) = max{sim(c, Pi)}i=1,...,g (21)

As the description of Equation (16) to Equation (21), PM is the most similar sample with
c. The proposed multi-scale evolutionary v-SVM (ME-v-SVM) algorithm is summarized
as follows.
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Step 1: Train multi-scale v-SVM on set N .
Step 2: Add new sample c to training set N , and generate new training set N∗ = {N, c}.
Step 3: Calculate sample PM which is the most similar to c, and get rid of it from N∗.

Enable N∗ and N with the same number of samples.
Step 4: Train multi-scale v-SVM on N∗ and obtain a new ME-v-SVM model.
Step 5: Return Step 2 to Step 4.

3. Soft-Measurement for Ethylene Product Concentration.

3.1. General description. Ethylene distillation tower (C-1440 tower) is key equipment
for ethylene productive unit. The process is shown in Figure 1.

Recycling 

ethane

C3H8

C3H6

Ethylene rectification 

tower

C_1440

CH4

Figure 1. Process flow chart for C-1440 tower

C-1440 tower is composed of tower shell, layer plate, reboiler and other important
equipment. The main component of feed is C2. The feed, from demethanizer bottom
and deethanizer top, is respectively sent into 113th and 98th layer plate of C-1440 tower.
The gas component rises. Products in the top of tower are mainly ethylene fractions.
The liquid component flows downwards, and its main component is ethane. When liquid
component flows downwards to 119th layer plates, some of the liquid components are
produced and fed into the middle reboiler (E-1411) to be heated through propylene heating
medium. The upper gas is then returned to the C-1440 tower from the 118th layer plate.
The remaining liquid components continue to flow downwards to the bottom reboiler (E-
1440) by the same method in middle reboiler. The vapors for tower top are condensed
by condenser (K-1650) with propylene refrigerant and fed to reflux vessel (V-1690). Then
the product is sent into the first layer plate of C-1440 tower by the pump (V-1690).

3.2. Hardware system architecture. The control system of the ethylene distillation
tower is CENTUM VP distributed control system (DCS). The system achieves process
control through the field control station (FCS). The industrial implementation of soft-
measurement modeling method is developed in an upper computer based on OPC tech-
nology. The upper computer adopts APC-ISYS software, while the lower computer is
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CENTUM VP software which is connected with the ethylene distillation tower. The DCS
system communicates with the upper computer through the OPCServer. The proposed
ME-v-SVM method is compiled in VbScript of the lower computer. The ethylene prod-
uct concentration can be calculated by the proposed soft-measurement modeling method.
The result is sent back to the FCS by OPCServer. The hardware system architecture is
shown in Figure 2 as follows.

Figure 2. Hardware system architecture

3.3. Soft-measurement modeling. Based on the mechanism and operation experience
for ethylene distillation process, 9 process variables defined as auxiliary variables including
the feed, the temperature of 118th sensitive plate, temperature of the flow of feed tower
bottom, the flow of tower top, reflux, pressure of tower top, temperature of tower top,
temperature of tower kettle, liquid level of tower bottom. These auxiliary variables are as
the input of soft-measurement model. Ethylene product concentration is as output. Pro-
cess of soft-measurement modeling with ME-v-SVM for ethylene product concentration
is shown in Figure 3.

The 1100 samples are collected from field C-1440 tower. We use firstly 1000 samples
as training set to build ethylene concentration model, and then utilize the surplus 100
samples to test the performance of the model. Here three methods including ME-v-SVM,
M-v-SVM and SVM are compared through establishing the soft measurement model of
ethylene products. MSE, MAE and MAXEE are employed for accuracy evaluation. For
Jackknifing, all the samples in the benchmark seek out orderly and the prediction model
is examined by training residual samples between training set and test set. According to
this process, it rules out the “memory” effect. Therefore, we use the Jackknife test to
choose parameters where C = 35, v = 0.02, η = 0.5, δ = 3.1.

The prediction results and error of ethylene concentration on different soft-measurement
methods are shown in Figures 4-6. Theses figures illustrate that ME-v-SVM has better
prediction results and smoother error for ethylene concentration compared to SVM and
M-v-SVM. From Figure 6, we can see that there is a smaller error between the initial data
and predicted data using the ME-v-SVM which has stronger generalization ability and
higher prediction accuracy.
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Figure 3. Process of soft-measurement modeling with ME-v-SVM

Figure 4. Predictive results with SVM

Figure 5. Predictive results with M-v-SVM
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Figure 6. Predictive results with ME-v-SVM

Table 1. Predictive error with various methods incremental learning

Algorithm MSE MAXE MAE

SVM 1.592 × 10−7 1.32 × 10−3 3.153 × 10−4

M-v-SVM 7.243 × 10−8 8.72 × 10−4 1.719 × 10−4

ME-v-SVM 3.028 × 10−8 8.63 × 10−4 0.944 × 10−4

Table 2. Time consumption with various methods incremental learning

Algorithm 1st 10th 50th 100th
SVM 2.22s 2.36s 2.77s 3.47s

M-v-SVM 3.14s 3.44s 4.15s 5.24s
ME-v-SVM 3.39s 3.39s 3.39s 3.39s

The predictive error and predictive time on different methods are listed in Table 1 and
Table 2. In Table 1, MSE, MAXE and MAE are 1.592 × 10−7, 1.32 × 10−3, 3.153 × 10−4

with the SVM respectively. Using the M-v-SVM method, MSE, MAXE and MAE are
7.243 × 10−8, 8.72 × 10−4, 1.719 × 10−4 respectively. From the information, M-v-SVM
method has better performance than SVM. However, employing ME-v-SVM method, the
better results can be seen. MSE, MAXE and MAE are 3.028 × 10−8, 8.63 × 10−4 and
0.944 × 10−4 respectively. Three errors compared with SVM decreased by 80.9%, 34.8%
and 70.1%.

Table 2 shows a time analysis for ethylene concentration. Clearly, with the increase of
prediction times, the time consumptions of SVM and M-v-SVM are constantly prolonged.
From the 1st to 100th prediction, the time consumptions of SVM and M-v-SVM increase
by 1.25s and 2.10s, respectively. However, it is worth mentioning that ME-v-SVM keeps
the same time consumption at each prediction time.

4. Conclusion. In this work, a new ME-v-SVM is proposed to solve the defects of SVM
incremental learning algorithm, which combines multi-scale learning method and evolution
learning method. Experimental results in ethylene distillation product quality show that
ME-v-SVM has high model accuracy, good adaptable ability, and stable performance.
Based on the multi-scale v-SVM method, we shall try to improve the structure of the
SVM model or to enhance the training speed of the model in the future research.
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