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ABSTRACT. In this paper, we deal with electric vehicle (EV) charging scheduling problem
from the aggregator perspective. In particular, we solve the problem of an aggregator
optimizing charging schedules of EVs with the objective of minimizing the charging cost.
Moreover, we formulate the problem under the preemptive charging scheme in which
interruptions are allowed during the charging process to increase charging flexibility. To
solve the resulting optimization problem, we propose a decomposition approach based on
column generation technique. Our computational experiments show that our approach
performs well to the extent that it can be used in practice to solve large-scale instances.
Keywords: Electric vehicle, Charging, Scheduling, Decomposition approach

1. Introduction. Electric vehicles (EVs) have the significant potential to facilitate the
ongoing transformation of modern energy system towards a low-carbon future. On the
other hand, the large-scale integration of electric vehicles comes with challenges for the
operation of the existing power system and the charging infrastructure, such as volt-
age fluctuation, power loss, and network congestion [1,2]. Coordination and control of
charging load of EVs can mitigate EV’s negative impact on the power system. Such coor-
dination can be performed by an aggregator, which is usually a central entity, e.g., existing
utility, acting as an interface between EVs and the power system operator. In this paper,
the aggregator is assumed to be a for-profit entity that tries to minimize charging costs
by redistributing aggregated charging load in such a way that the charging load increases
as much as possible when the electricity is relatively cheap. The aggregator could also
be a non-profit entity that provides the power grid with regulation services by increasing
or decreasing charging rates in response to grid conditions, thereby helping to maintain
stability [3]. We investigate optimal scheduling of EV charging from the perspective of
the aggregator.

The EV charging scheduling problem can be classified by the charging scheme. Most
works in the literature consider a continuous charging scheme under which the charging
rate can change continuously between zero and the maximum rate [2,5,6]. In practice,
EVs are usually charged at discrete or constant charging rate. Such a charging scheme has
also been considered in several works [7-9]. Han et al. [7] and Beaude et al. [8] assumed
that the EV is charged at a constant charging rate. Binetti et al. [9] considered the case
where the charging process can be interrupted.

In this paper, we focus on realistic charging scenario that takes account of the typical
charging profile of the lithium-ion battery that most EVs use. Specifically, under such
a charging profile, EV is charged at constant charging rate until the SOC reaches a
certain level, after which the charging rate decreases to zero as the SOC reaches full
charge. Moreover, to increase the charging flexibility, interruptions are allowed during
the charging process. We present the mathematical formulation based on network flow
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for the resulting charging scheduling problem. However, the proposed formulation can be
large and impractical when the number of EVs is large. To overcome this, we propose a
new formulation based on the variable representing a path generated from network flow
constraints. To solve this formulation efficiently, we propose a decomposition algorithm
based on the column generation technique, which is known to be suitable for solving
formulations with a large number of variables.

This paper is structured as follows. Section 2 describes the charging scenario assumed
in the paper. The mathematical formulation and solution method are given in Sections
3 and 4, respectively. The computational results are discussed in Section 5, and our
conclusions are given in Section 6.

2. Charging Scenario. Consider a scenario where a single aggregator coordinates the
charging behavior of all EVs that subscribe for charging. The aggregator can be assumed
to operate a charging station. The charging horizon is discretized into finite time periods
(teT={1,...,7}) within which each EV (v € V') plugs in and charges a certain amount
of electricity. The electricity price (M?) is assumed to vary depending on time, which
motivates the aggregator to minimize total charging costs by distributing charging load
optimally over a planning period. We denote as L' the maximum allowable charging load
at time t. We assume that it represents the amount of power the aggregator procured
at the day-ahead market. The aggregator collects information on each EV’s charging
requirement before proceeding to the optimization process. It is assumed that EV v

informs the aggregator of its arrival time 7, initial battery level 72, departure time 72,

and desired battery level 7. We denote as T'(v) = {Tf N 1} the set of admissible
time periods of EV wv.

In practice, EVs are usually charged following pre-determined charging profiles. In this
paper, we adopt a typical lithium-ion battery charging profile that can be approximated
as a piecewise linear function of the elapsed charging time as shown in Figure 1 [1]. Note
that, under this charging profile, it is assumed that the EV is charged at constant rate
until the SOC reaches a certain level, after which the charging rate decreases to zero
as the SOC approaches its maximum. Most of the works in the literature rely on the
assumption that charging power can change between zero and the maximum at any time
for reasons of simplicity. However, such an assumption can yield sub-optimal or even
infeasible charging schedules.

Under the piecewise linear charging profile, the EV is charged without interruptions
once the charging starts. An example of discretized charging schedule under such a
charging profile is shown in Figure 2(a), where the EV is charged at constant power for
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FIGURE 1. Piecewise linear charging profile
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FIGURE 2. Examples of discretized charging schedule: (a) non-preemptive
charging, (b) preemptive charging

six successive hours after which, the charging power is decreased for the next 2 hours.
The aggregator determines only the charging start time, as the charging schedule can be
fixed once the charging start time is given, which restricts flexibility in charging control.
In order to enhance the flexibility in charging control, therefore, we additionally allow
interruptions in the middle of the charging process. We call this scheme the preemptive
charging scheme [3]. Figure 2(b) shows an example of preemptive charging schedule,
which incorporates two interruptions into the non-preemptive charging schedule of Figure
2(a). Han et al. [7] also considered a charging scheme similar to ours. However, they
assumed a constant charging power.

3. Mathematical Formulation. In this section, we propose mathematical formulation
of the EV charging scheduling problem under the preemptive charging scheme. Prior to
building the mathematical formulation, we first associate a transition network to each
EV by which we can visualize the charging schedule of the EV. We define nodes in the
network as a pair (¢, k) where t represents the time period and k represents the SOC level
ranging from 1 to k,, the number of different SOC levels. The transitions between nodes
correspond to one of the following two cases. The transition from a node (¢, k) to a node
(t + 1,k + 1) corresponds to the event that EV v with SOC level k at the beginning of
time ¢ is charged during time ¢. The transition from a node (¢, k) to a node (¢t + 1,k)
corresponds to the event that EV v with SOC level k at the beginning of time ¢ is not
charged during time t. Figure 3 illustrates all possible transitions associated with node
(t, k).

In this transition network, a feasible charging schedule of EV v can be described by a
path from node (Tf, 1) to node (TD, Hv).
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FIGURE 3. Transitions from and to node (t, k)
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We now present the formulation of the charging scheduling problem under the preemp-
tive charging scheme based on the network flow model on the transition networks [9]. In
the formulation, the binary variable zf, takes value 1 if EV v with SOC level k at the
beginning of time ¢ is charged during time ¢, and 0 otherwise. Similarly, the binary vari-
able y!, takes value 1 if EV v with SOC level k at the beginning of time ¢ is not charged
during time ¢, and 0 otherwise. The formulation (P) can be developed as follows:

Ky—1
min Z Z ZMt KT (1)
veV te€T'(v) k=1
Koy—1
st.Y Y Pyal, <L VteT, (2)
veV k=1

xf}k—i_yik yvk +x(k1 VUEVtGT \{vav} k_l )y R, (3)

t:'rijg t—TS
95((k—1)) + y((k 1)) =1, YwevV, (4)
Ty — TD
x<§k ml) +y(fk i ) —1,Wwev, (5)

Objective (1) minimizes the charging costs over a planning horizon, where P, repre-
sents the charging power of EV v when it is charged from SOC level k. Constraints (2)
enforce maximum limits on the total charging power at each time period. Constraints
(3)-(5) describe flow conservation constraints at each node in the transition networks. In
particular, constraints (4) and (5) are flow conservation constraints defined at the source
and sink nodes, respectively. Finally, constraints (6) enforce the integrality of variables.

The formulation (P) can be large and impractical when the number of EVs is large.
To overcome this, we propose the formulation (P’) based on the variable representing a
path in the transition networks. In the next section, we will develop an algorithm for
solving the problem via the formulation (P’). Recall that a feasible solution of the set of
constraints (3)-(6) for EV v corresponds to a path from a node (77, 1) to a node (7°, x,)
in the transition network of EV v. Let K(v) denote the set of all feasible paths of EV v.
Then (P) can be reformulated using path variables as the following problem.

P’) min Z Z Crrk (7)

veV keK (v
sty Z Ptk < ' VteT, (8)
veV keK (v
ZTUZLV’UEV, (9)
keK(v)
ry € {0,1}, (10)

where the binary variable r* takes value 1 if feasible path k of EV v is selected, 0 otherwise.
In the objective (7), C¥ is the total cost needed to charge EV v along the path k. In
constraints (8), P* is the charging power of EV v at time period ¢ when the charging
schedule follows path k. Constraints (9) ensure that at least one path must be selected

for each EV v. Finally, integrality of path variables is imposed by constraints (10).

4. Solution Method. In this section, we propose the algorithm for solving the EV
charging scheduling problem based on the formulation (P’). Note that the formulation
(P) can be solved using MIP solvers. However, the formulation remains computationally
intractable for large-scale instances as the number of variables and constraints depends
on the size of transition networks. The formulation (P’) can also have too many variables
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because each variable corresponds to a feasible path in the transition network and the
number of paths can be very large. However, (P’) is more suitable to apply decomposition
approach as the formulation can be easily decomposed into the problem for path gener-
ation and the problem for coordinating generated paths. In the following part, we first
show how to solve the LP relaxation of (P’) using column generation. Then, we introduce
a simple heuristic algorithm to find an integer solution based on the variables generated
during the column generation procedure.

The idea of the column generation algorithm that we propose is, instead of solving
the LP relaxation of (P’) directly, to repeatedly solve a restricted master problem that
includes only a subset of the columns and a pricing problem that generates new columns
to be added to the restricted master problem. Let K'(v) be the set of feasible paths of
EV v generated up to a certain iteration of the algorithm. The restricted master problem
(RM) can then be expressed as:

(RM) min > > Crk (11)

veV keK'(v)
sty Y PiE <L VteT, (12)
veV keK'(v)
Z rF>1, Yo eV, (13)
keK!(v)
0<rh<1. (14)

Let ~; and p, be the dual variables associated with constraints (12) and (13) respectively.
After solving the restricted master problem, we check whether there are any paths with a
negative reduced cost that are not included in the restricted master problem. If such paths
exist, they are added to (RM), and the process is repeated; otherwise, the current optimal
solution to (RM) is optimal for the LP relaxation of (P’) and therefore the algorithm
terminates.

In order to determine paths with negative reduced cost, denote as (4, fi,) the optimal
dual values for the current optimal solution of (RM). The reduced cost of a candidate

path k of EV v is:
T

Ozlj - ZPftﬁt = -
t=1
We therefore solve the following pricing problem for EV v in order to generate new
paths with negative reduced cost:

where X} is the set of charging transitions contained in the path k of EV v, and ¢ =
(M*' — 5,) P!, where [ and t are uniquely defined from transition e : (¢,1) — (t+ 1,1+ 1).
For each EV v, this pricing problem is the shortest path problem from the source node
(757,1) to the sink node (7., ,) over the transition network of EV v with positive costs
on transitions; therefore, it can be solved rapidly using dynamic programming algorithm.
If the optimal cost is less than fi,, a new path can be added to the restricted master.
We have solved the LP relaxation of (P’); hence the solution obtained can have fractional
values. However, we must find an integer solution to obtain a feasible charging schedule of
all EVs. To do this, we solve the final restricted master problem with binary restrictions
on path variable 7%, after the LP relaxation has been solved using column generation.

Note that this is equivalent to solving (P’) with only a subset of path variables that was
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generated during the column generation process. This heuristic looks simple, but works
very well, which will be demonstrated via computational experiments in the next section.

5. Computational Results. In this section, we present the results of our computational
experiments. All tests were performed on a 2.4-Ghz Intel Core i5 processor with 8GB
RAM. We solved the restricted master problems using Cplex 12.6 with default parameter
settings.

Simulation settings are as follows. A planning horizon of 17 hours is considered, and
each time period is given as 1 hour. The hourly electricity price is randomly chosen in the
range of [5,15]. We assume that a battery of 25kWh is used for all EVs and it is charged
with a rate of 3.5kW for the first 6 hours, 3kW and 1kW for the next 2 hours. The initial
battery level is randomly chosen in the range of [1,16] kW, and all EVs are fully charged
once they start charging. We assume that the arrival time of each EV follows a normal
distribution with a mean of 2h and a standard deviation of 1h, and the departing time
follows a normal distribution with a mean of 15h and a standard deviation of 1h. We
solved the problem for different number of EVs (from 100 to 1,000) and the maximum
hourly charging load is given as 1.5 times the number of EVs.

We first present the computational performance of our column generation based heuris-
tic algorithm for solving the preemptive charging problem. Table 1 shows computational
times needed to solve the problem. We can see that our algorithm performs well to the
extent that the problem with 1,000 EVs can be solved within 10 seconds. Note that
the column generation procedure runs very fast compared to the MIP heuristic (solving
the final restricted master problem with binary variables), and MIP heuristic becomes a
bottleneck as the number of EVs increases.

TABLE 1. Computational times (in seconds)

#EV  MIP heuristic cg
100 0.14 0.24
300 1.02 0.32
500 2.53 0.35

1,000 8.8 0.97

We next compare total charging costs of two charging schemes (preemptive charging
and non-preemptive charging). The total charging cost of preemptive charging is obtained
from our heuristic algorithm and that of non-preemptive charging can be obtained by
solving a simple mixed integer programming problem [8]. Table 2 shows the results. As
expected, the preemptive charging yields less charging cost than non-preemptive charging
with the help of interruptions during the charging process. The cost reduction ranges
from 5.5% to 8.9%. We can benefit from such interruptions as they enable charging load
to be distributed in such a way that we increase charging amount as much as possible
when electricity price is low.

TABLE 2. Comparison of charging costs (non-preemptive vs. preemptive)

#EV  non-preemptive preemptive

100 15,961 14,655
300 45,765 41,662
200 77,937 73,478

1,000 155,013 146,442
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6. Conclusions. In this paper, we considered the scheduling of EV charging under pre-
emptive charging scheme, which can increase the flexibility in charging control since it
allows interruptions during the charging process. We proposed an efficient decomposition
algorithm for solving a mathematical formulation of the preemptive charging scheduling
problem. Our computational experiments demonstrated that the proposed algorithm per-
formed well on large-sized instance and therefore can be used in practice. Moreover, we
showed that the charging costs can be reduced significantly by introducing preemptive
charging scheme. Future research may include the investigation of decentralized optimiza-
tion of EV charging schedules. The centralized optimization performed by the aggregator
considered in this paper may have limitations since it can be difficult to obtain all the
private information of the EVs. In this case, EVs can collaborate with the aggregator
and decide their charging schedule in a decentralized fashion. Such a collaborative opti-
mization strategy is worth investigating.
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