
ICIC Express Letters
Part B: Applications ICIC International c⃝2017 ISSN 2185-2766
Volume 8, Number 11, November 2017 pp. 1529–1536

AN ESPER-BASED FILTERING SYSTEM FOR REAL-TIME
DATA STREAMS

Sebin Park, Sanghun Lee, Myeong-Seon Gil and Yang-Sae Moon

Department of Computer Science
Kangwon National University

1 Kangwondaehak-gil, Chuncheon-si, Gangwon-do 24341, Korea
{ sebinpark; sanghun; gils; ysmoon }@kangwon.ac.kr

Received May 2017; accepted August 2017

Abstract. In this paper, we deal with the filtering problem of data streams. The data
stream is continuously generated, and its size is huge. In order to process and analyze
the data stream in real time, we need to sufficiently remove unnecessary data through
filtering. However, existing filtering algorithms can be applied to a single data format
only, and it is very difficult to apply them to a variety and complex stream environments.
To solve this problem, we propose a filtering system that can choose various filtering
algorithms according to the stream format. The proposed system is based on Esper, which
is a representative open source data stream management system (DSMS) for real-time
filtering support. Using Esper we can filter data streams in real time anywhere, anytime,
based on a Web-based client-server model. Our system supports real-time stream and/or
bulk stream as the input data. In addition, we implement typical filtering algorithms
including query filtering, Bloom filtering, and Bayesian filtering to operate in real time.
Through the real implementation of the proposed filtering system, we show that the user
can extract only meaningful data more accurately and efficiently by exploiting various
filtering algorithms.
Keywords: Data stream processing, Esper, DSMS, Real-time purification, Filtering

1. Introduction. In this paper, we deal with the real-time filtering problem of data
streams. Filtering is a way of removing unwanted data, such as spam mails. Since the
data stream is generated in real time, we need to sufficiently remove unnecessary data for
analyzing it very fast. However, most existing filtering algorithms work well for a specific
type of data [11,12]. Therefore, it is hard to accurately filter unnecessary data using a
single filtering algorithm for various types of data stream or mixed stream environments
[1]. To solve this problem, we propose a filtering system that can choose a filtering
algorithm based on the data stream format and the analysis purpose.

Data processing is divided into batch processing and real-time processing. Batch pro-
cessing is a method of analyzing already stored data, and real-time processing is a method
of real-time analyzing input data in main memory. In general, the data stream is gener-
ated in real time and is large in size, and thus, it is difficult to store them in a database
for the analytical purpose. To analyze the data stream in real time, we can use an in-
memory based data stream management system (DSMS) [2]. Esper [3] is a representative
open source DSMS for real-time processing of data streams. It supports event processing
language (EPL) [4], which is similar to SQL and capable of complex stream processing.
However, Esper only provides EPL-based query filtering for stream filtering, and it does
not support various existing filtering algorithms. Therefore, in this paper, we propose an
Esper-based real-time filtering system applying various filtering algorithms to Esper for
efficient processing of real-time data streams.

The proposed system is designed and implemented based on the client-server model.
The operation procedures are as follows. The client passes the user selected data stream,

1529



1530 S. PARK, S. LEE, M.-S. GIL AND Y.-S. MOON

filtering algorithm, and filter conditions to the server. Then it displays real-time filtering
results from the server. The server constructs a filter model and a filtering algorithm
based on the information received from the client and applies it to Esper to filtering the
data stream in real time. The server then returns the filtering results to the client in real
time.

2. Related Work. Filtering [5] is a purification method that removes unwanted data
from the input data for the purpose of improving the quality and reliability of the data.
Filtering algorithms can be divided into supervised learning-based filtering and unsuper-
vised learning-based filtering. Supervised learning-based filtering is an intelligent method
of purifying the input data by learning the filter model before filtering. Representative
algorithms for this method are Bayesian filtering [6,13], content-based filtering [1,14], and
Kalman filtering [6,15]. On the other hand, unsupervised learning-based filtering is a pu-
rification method that does not require an additional learning procedure for the filtering.
Typical algorithms for this method include hash filtering [1,16], query filtering [7,17], and
Bloom filtering [1,18]. In this paper, we implement the proposed system using three filter-
ing algorithms: Bayesian filtering with supervised learning-based filtering, Bloom filtering
and query filtering with unsupervised learning-based filtering. We choose these filtering
algorithms since they are easily applicable to the data stream environment and are most
commonly used in many fields such as classification and detection search.

Esper is a representative open source DSMS for the analysis of complex event processing
(CEP) [8] and event series. CEP is an in-memory technology for real-time processing of
a large-capacity stream generated from various data sources. Figure 1 shows the detailed
structure of Esper. As shown in the figure, Esper consists of input adapters, a CEP
engine, and output adapters. For the detailed description of Esper, readers are referred
to [3].

Figure 1. Overall working structure of Esper

As a specific language to the stream domain, Esper supports EPL for query processing
and execution. EPL is a query language like SQL that has SELECT, FROM, WHERE,
and HAVING clauses. Likewise, Esper is not only capable of real-time processing of the
data stream, but also easy for the user to use. Therefore, in this paper, we propose a
useful system that applies various filtering algorithms to Esper and selectively provides
filtering algorithms according to data characteristics and analytical purpose.

3. Esper-based Real-time Filtering System. The Esper-based filtering system pro-
posed in this paper is based on a client-server model as shown in Figure 2. The client-server



ICIC EXPRESS LETTERS, PART B: APPLICATIONS, VOL.8, NO.11, 2017 1531

model is a network-based architecture widely used by many analysis and management sys-
tems. Also, it is easy to maintain and allows multiple users to use the same system at
the same time. In this paper, we implement the client as a Web-based system so that
users can exploit the filtering system anytime and anywhere through the Web browser.
The working procedure of the client and the server is as follows. First, the client chooses
the data stream from the user and selects a filtering algorithm suitable for the data for-
mat and analytical purpose. Then, the client receives the filter conditions to be used for
filtering and sends it to the server (À). Next, the server generates the data stream, the
filter model, and the filtering algorithm using the received filter conditions and applies it
to Esper (Á). After then, the server filters the data stream in real time (Â). Finally, the
server sends the filtered result back to the client in real time, and the client visualizes the
filtering result to the user in real time and stores them as a file (Ã).

Figure 2. The overall architecture of the Esper-based real-time filtering system

Figure 3 shows the detailed working procedure of the client-side in our filtering system.
As shown in the figure, the client consists of five modules: data source input, algorithm
selection, condition input, communication, and output modules. The detailed functions
of each module are as follows. Data source input module receives the data stream to
be filtered, where the proposed system supports real-time and bulk data streams. The
real-time data stream inputs source information in which data is generated, and the bulk
data stream directly inputs a file stored in the disk. The input data is filtered by the al-
gorithm selected by the user through the algorithm selection module. The algorithms
supported by the proposed system are query filtering, Bloom filtering, and Bayesian fil-
tering. Filling condition input module receives the filter condition for generating the
filter model. If the user uses query filtering, it enters the condition to the EPL WHERE
clause, and if the user uses Bloom filtering, it registers the condition for the Bloom filter.
In the case of Bayesian filtering, unlike the above two filters, the learning data must be
used to generate the filter model. Therefore, the user inputs conditions for generation of
learning data in Bayesian filtering. Communication module serves to exchange data
with the server. In particular, it uses HTTP and Web socket communication [9] to trans-
mit data streams, filtering algorithms, and filter conditions from the user to the server,



1532 S. PARK, S. LEE, M.-S. GIL AND Y.-S. MOON

Figure 3. The client-side working procedure of the proposed system

Figure 4. The server-side working procedure of the proposed system

and receives the filtering results from the server in real time. Output module visualizes
the filtering results delivered from the server in real time to the user. If the user requests
to save the result, this module stores the filtering results as a file and provides it to the
users.

Figure 4 shows the detailed working procedure of the server in our filtering system.
In this figure, the server consists of five modules: communication, data stream construc-
tion, filter model creation, EPL creation, and real-time filtering modules. The detailed
functions of each module are as follows. Communication module exchanges data with



ICIC EXPRESS LETTERS, PART B: APPLICATIONS, VOL.8, NO.11, 2017 1533

the client and is the same as the communication module of the client. Data stream
construction module constructs a data stream from a data source or a file. When
the data stream received from the client is a data source, the data stream is constructed
from the source in real time. If the data stream received from the client is a file, this
module converts the file directly into a data stream. Filter model creation module
builds a learning model for Bloom and Bayesian filters. This module receives the filtering
conditions from the client and creates a model for each filtering algorithm based on the
conditions. The results of each learning model are reflected in the conditions of Bloom
and Bayesian filters. EPL creation module generates each algorithm in an EPL form
based on user input conditions and learning results of the filter model. The generated
EPL type algorithms filter the input data stream in real time on the Esper’s CEP engine-
based real-time filtering module. The result of filtering is delivered to the client in
real time via the communication module.

4. System Implementation and Evaluation. The implementation environment of
the proposed Esper-based real-time filtering system is as follows. To implement both
client and server, we adopt Java and Apache Tomcat 7.0 using the Eclipse Java EE IDE
for Web Developers on the Windows 8 operating system. As the real-time input stream,
we use Twitter data called “tweet” from the Twitter API [10]. Bulk stream uses 30,000
pre-collected tweets. Figure 5 shows an example of the tweets used in the experiment.
You can see that a tweet consists of five schemes: user name, user ID, creation date,
language, and content.

Figure 6 shows the main screenshot of the proposed real-time filtering system. As
shown in the figure, the part a⃝ is a data stream selection button, which is to select a
real-time stream or a bulk stream. The part b⃝ is for selecting an algorithm to be used
for filtering, which is to select one of Bloom, query, and Bayesian filtering. The part c⃝
is to input filtering conditions.

Figures 7(a) and 7(b) show the results of query filtering and Bloom filtering, respec-
tively, using a real-time tweet stream. In these figures, the part c⃝ confirms the filtering
result in real time, and the part a⃝ stores the filtered result into a file. Also, the part b⃝

{ “UserName”: “knu”, “UserID”: 3157128440, “CreatedAt”: “Wed Feb 10 15:50:45
KST 2017”, “Lang”: “ko”, “Text”: “@Doc Ruby bot Hello, this is Kangwon Na-
tional University.” }

Figure 5. An example of the collected tweets

Figure 6. The main screenshot of the proposed system



1534 S. PARK, S. LEE, M.-S. GIL AND Y.-S. MOON

(a) Results of query filtering (b) Results of Bloom filtering

Figure 7. The results of supervised filtering algorithms

(a) Screenshot of selecting learning data (b) Results of Bayesian filtering

Figure 8. Bayesian filtering’s learning step and filtering results

returns to the initial screen of the client. In query filtering of Figure 7(a), we use “lan-
guage != en” as the filtering condition. In other words, we filter all non-English tweets.
The results of Figure 7 show that the language of the filtered tweets is all only English.

Figure 7(b) shows the Bloom filtering results using a real-time tweet stream. In the
Bloom filter experiment, the filtering condition is “language = en”. In addition, contrary
to query filtering, it uses filtered data as results. This means that we do not want to filter
tweets in English but extract it as a result. As shown in Figure 7(b), we can see that only
the English tweets appears in the same way as the query filtering results in Figure 7(a).

Figure 8(a) shows a screenshot of selecting learning data in Bayesian filtering. In the
Bayesian filtering experiment, we use bulk tweets and use “language = en” as a condition
for selection of learning data. As you can see from the figure, we use that only English
tweets are shown as training data according to the condition. The user classifies these
learning data into the data to be filtered and to be extracted. That is, the user selects the
data to be filtered in the check box of the part a⃝, which will be used as the learning data,
and the client transmits the selected data to the server. The server learns the filter model
from the received learning data. In the experiment, we check the tweets with ‘man’ as



ICIC EXPRESS LETTERS, PART B: APPLICATIONS, VOL.8, NO.11, 2017 1535

filtering data as shown in Figure 8(a). Figure 8(b) shows the results of Bayesian filtering
with the filter model generated from Figure 8(a). However, the figure shows that both
the tweets with the ‘man’ and the tweets without it are filtered out. This is because the
performance of the Bayesian filter model is greatly influenced by the number of learning
data. In this experiment, only a small amount of learning data was used, and the filtering
was not performed effectively. For the more accurate filtering, we need to use a large
amount of learning data.

5. Conclusions. In this paper, we proposed and implemented a real-time filtering system
for data streams based on Esper. Since the data stream is generated in real time, we need
to filter out unnecessary data very fast and very efficiently. However, existing filtering
algorithms can filter only a specific type of data, and it is difficult to process various
complicated data streams. To solve this problem, we propose a new filtering system which
can select a suitable filtering algorithm for the stream format. We also implement the
system based on Esper which can process the data stream in real time. Through the real
implementation of the proposed filtering system we show that the user can extract only
meaningful data more accurately and efficiently by exploiting various filtering algorithms.
As the future work, we will apply the proposed real-time filtering system to Storm for the
distributed processing of filtering functions.

Acknowledgment. This work was partly supported by Institute for Information & Com-
munications Technology Promotion (IITP) grant funded by the Korea government (MSIP)
(No. R7117-17-0214, Development of an Intelligent Sampling and Filtering Techniques for
Purifying Data Streams) and the Basic Science Research Program through the National
Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future
Planning (NRF-2017R1A2B4008991).

REFERENCES

[1] J. Leskovec, A. Rajaraman and J. D. Ullman, Mining of Massive Datasets, Cambridge University
Press, 2015.

[2] D. Abadi, D. Carney, U. Çetintemel, M. Cherniack, C. Convey, C. Erwin, E. Galvez, M. Hatoun, A.
Maskey, A. Rasin, A. Singer, M. Stonebraker, N. Tatbul, Y. Xing, R. Yan and S. Zdonik, Aurora: A
data stream management system, Proc. of the Int’l Conf. on Management of Data, San Diego, CA,
USA, pp.1-18, 2003.

[3] Esper, http://www.espertech.com.
[4] H. Li, Y. Zhang and Y. Chen, PSTER: A novel probabilistic event processing language for uncertain

spatio-temporal event streams of Internet of vehicles, Proc. of the 2015 IEEE Int’l Conf. on Software
Quality, Reliability and Security-Companion, Vancouver, Canada, pp.161-168, 2015.

[5] B. D. O. Anderson and J. B. Moore, Optimal Filtering, Dover Publications Inc., 2012.
[6] E. Alpaydin, Introduction to Machine Learning, The MIT Press, 2010.
[7] B. Chazelle, Filtering search: A new approach to query-answering, SIAM Journal on Computing,

vol.15, no.3, pp.703-724, 1986.
[8] E. Wu, Y. Diao and S. Rizvi, High-performance complex event processing over streams, Proc. of the

Int’l Conf. on Management of Data, Chicago, IL, USA, pp.407-418, 2006.
[9] M. R. Rahman and S. Akhter, Real-time bi-directional traffic management support system with GPS

and WebSocket, Proc. of the Int’l Conf. on Computer and Information Technology, Ankra, Turkey,
pp.959-964, 2015.

[10] Twitter API, http://dev.twitter.com.
[11] A. K. Uysal and S. Gunal, The impact of preprocessing on text classification, Information Processing

& Management, vol.50, no.1, pp.104-112, 2014.
[12] K. Manandhar, X. Cao, F. Hu and Y. Liu, Combating false data injection attacks in Smart Grid using

Kalman filter, Proc. of the 2014 IEEE Int’l Conf. on Computing, Networking and Communications
(ICNC), Honolulu, HI, USA, pp.16-20, 2014.

[13] N. Jatana and K. Sharma, Bayesian spam classification: Time efficient radix encoded fragmented
database approach, Proc. of the 2014 IEEE Int’l Conf. on Computing for Sustainable Global Devel-
opment (INDIACom), New Delhi, India, pp.939-942, 2014.



1536 S. PARK, S. LEE, M.-S. GIL AND Y.-S. MOON

[14] R. Ronen, N. Koenigstein, E. Ziklik and N. Nice, Selecting content-based features for collaborative
filtering recommenders, Proc. of the 7th ACM Conf. on Recommender Systems, Hong Kong, China,
pp.407-410, 2013.

[15] G. Ligorio and A. M. Sabatini, A novel Kalman filter for human motion tracking with an inertial-
based dynamic inclinometer, IEEE Trans. Biomedical Engineering, vol.62, no.8, pp.2033-2043, 2015.

[16] T. Dong, J. Shi, J. Fan and L. Zhang, An improved rete algorithm based on double hash filter and
node indexing for distributed rule engine, IEICE Trans. Information and Systems, vol.96, no.12,
pp.2635-2644, 2013.

[17] J. Shin, S. Eom and K. H. Lee, Q-ASSF: Query-adaptive semantic stream filtering, Proc. of the 2015
IEEE Int’l Conf. on Semantic Computing (ICSC), Anaheim, CA, USA, pp.101-108, 2015.

[18] H. M. Ju and H. Lim, New approach for efficient IP address lookup using a bloom filter in trie-based
algorithms, IEEE Trans. Computers, vol.65, no.5, pp.1558-1565, 2016.


