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Abstract. Clustering is a widely applied technology in many fields. Due to the redun-
dant features contained in the original data, traditional K-means suffers from the unstable
performance. Although recent works try to perform dimension reduction and K-means
together, they are still sensitive to the outliers with the l2-norm based loss function. In
this paper, we propose a robust K-means type clustering that jointly performs cluster-
ing and sparse learning. Different from the previous works, we use l2,1-norm based loss
function to improve the robustness of clustering and impose low-rank regularization to
preserve the most representative features. Experimental results on six benchmark datasets
demonstrate the effectiveness of the proposed algorithm.
Keywords: Clustering, Sparse learning, K-means, l2,1-norm, Low-rank regularization

1. Introduction. Clustering is a key technology in many fields, such as machine learning,
and image processing. The main task of clustering is to categorize data samples into
several groups, where samples in the same group are similar and those in different groups
are dissimilar. K-means is one of the most popular clustering algorithms, which has been
widely used in various applications for its sufficiency and simplicity [1]. As presented
in previous works [2], traditional K-means clustering tends to fail when dealing with
high-dimensional data, which usually contains redundant features and noises. To cope
with this problem, researchers proposed to project the data onto a low-dimensional data
space through dimension reduction such as Principal Component Analysis (PCA) and
Locality Preserving Projections (LPP), and perform clustering subsequently. However,
such projection might not be helpful for improving the clustering performance, due to the
separation between subspace learning and clustering.

To overcome this problem, a simple and intuitive way is to integrate dimension reduc-
tion and clustering into a joint framework. Over the past two decades, many effective
subspace clustering algorithms have been proposed [1,3]. For instance, Ye et al. proposed
a discriminative K-means clustering which performs the Linear Discriminant Analysis
(LDA) and K-means simultaneously [1]. Ding and Li coherently combined LDA and
K-means clustering into a single framework, where the class labels are generated adap-
tively by K-means in a low-dimensional data space [3]. Nevertheless, LDA suffers from
“small size sample” problem, making these LDA based subspace clustering algorithms
hard to be applied to real-world applications, such as multimedia understanding, web
page classification, and gene expression profiling. Li et al. noticed this problem and tried
to address it with a new Maximum Margin Criterion (MMC) which works well when the
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number of training samples is smaller than that of features [4]. Nie et al. transformed the
objective function of LDA to a least square regression formulation and achieved better
results on various kinds of applications [5]. Hou et al. proposed a discriminative embed-
ded clustering framework by jointly combining PCA and K-means into a unified objective
function. They also proved that the proposed framework has close relationships with
several traditional subspace clustering algorithms [6]. However, the main drawback of
the abovementioned methods is that they are sensitive to the outliers for the least-square
based distance measurements.

In this paper, we propose a robust clustering by imposing a low-rank constraint on the
objective function of K-means. The sparse learning and clustering can be simultaneously
performed by an efficient iterative optimization approach. The major contributions of
this paper are as follows. (1) An l2,1-norm based K-means clustering with low-rank regu-
larization is proposed. (2) The algorithm is able to find the most representative features
by performing sparse learning and clustering simultaneously and effectively.

The remainder of this paper is organized as follows. Section 2 shows the related works
and Section 3 prespents our proposed method and experiments are given on Section 4.
Finally, the conclusion and future works are listed in Section 5.

2. Notations and Related Works. In this section, we briefly review the related works.
This paper is closely related to K-means and l2,1-norm based sparse learning.

2.1. Notations. Suppose that matrix X = [x1, . . . , xn] ∈ Rd×n denotes the input data-
set, where d is the number of features and n is the number of data samples. ∥ · ∥F denotes
the Frobenius norm. ∥ · ∥∗ means the nuclear norm. Let F = [f1, . . . , fn]T ∈ Rn×c be
the cluster indicator matrix and c is the number of clusters, fi ∈ Rc×1 is cluster indicator
vector of sample i, if data xi belongs to class j, Fij = 1; otherwise Fij = 0. Throughout
this paper, all the matrices are written as uppercase and vectors are written as bold
lowercase.

2.2. Traditional K-means. Traditional K-means aims to assign the data into different
groups with several random initialized centroids, and iteratively update the centroids
using data in new clusters. Such assignment and update step are repeated until further
refinement can no longer improve the model. Concretely, we can formulate the K-means
objective function as follows:

min
F

c∑
k=1

∑
i∈Ck

(xi − mk)
T (xi − mk) (1)

where mk is the centroid of cluster Ck.
Denote G = [g1, . . . , gc] ∈ Rd×c as the centroid matrix and recall the definition of F .

Problem (1) can be reformulated as:

min
F

n∑
i=1

(xi − Gfi)
T (xi − Gfi) = min

F

∥∥XT − FGT
∥∥2

F
(2)

2.3. l2,1-norm based sparse learning. As previous works demonstrated, l2-norm based
distance measurement or loss function are sensitive to outliers. To fix this problem, Nie et
al. imposed an l2,1-norm based regularization technique into their feature learning frame-
work [7]. Other l2,1-norm based feature learning algorithms can be found in [8,9]. Chang
et al. transformed the standard PCA formulation into a low-rank based linear regression
optimization problem and proposed a robust PCA by using the l2,1-norm based loss func-
tion instead of the l2-norm based one [10]. Recently, some researchers also incorporated
the l2,1-norm regularization into clustering [11-13]. For example, Chang et al. proposed a
spectral clustering algorithm, where a shrinking strategy based on l2,1-norm was utilized
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[11]. Cai et al. [12] and Du et al. [13] developed a multi-view and a multi-modal K-means
clustering respectively, both of which imposed the l2,1-norm on their objective function.

Given an arbitrary matrix M ∈ Rp×q, its l2,1-norm can be defined as:

∥M∥2,1 =

p∑
i=1

√√√√ q∑
j=1

M2
ij (3)

From Equation (3) we can find that the l2,1-norm penalizes the square root of square
sums of each row in M , resulting in a group sparsity on M and an increasing robustness
to the outliers.

3. The Proposed Method.

3.1. The problem formulation. As we mentioned before, traditional K-means suffers
from 1) it is sensitive to outliers as the l2-norm based loss function, and 2) it often
performs on the original data with high dimensionality, which degrades its clustering
performance. Although dimension reduction algorithms can be applied beforehand, the
separation between dimension reduction and clustering might be not helpful for improving
the clustering performance. In this section, we will deal with these problems step by step.
First, to handle the outlier, following the previous works [7], an l2,1-norm based loss
function is imposed to the objective function of K-means, which is formulated as follows:

min
W,F,G

∥∥XT − FGT
∥∥

2,1
(4)

Considering the difficulty of dealing with high-dimensional data in Equation (4), we
impose a low-rank regularization term into Equation (4). Concretely, we aim to find
a projection matrix M ∈ Rd×d, which projects the data into a new feature space with
sparsity. Thereafter, we propose the following objective function:

min
W,F,G

∥∥XT W − FGT
∥∥

2,1
+ γ∥W∥∗ (5)

where γ is the regularization parameter.

3.2. Optimization. Since the l2,1-norm in problem (5) is non-smooth, making it hard
to be directly solved. In this section, we propose an alternative approach to optimize it.
Concretely, we optimize some of the variables by keeping the others constant. We first
reformulate problem (5) as:

min
W,F,G

Tr
((

XT W − FGT
)T

De

(
XT W − FGT

))
+ γTr

(
W T DwW

)
(6)

Let E = [e1, . . . , en] = XT W − FGT and define De and Dw as:

De =


1

2
√

e′
1e1

. . .
1

2
√

e′
nen

 , Dw =
1

2

(
WW T

)− 1
2 (7)

Step 1: Fixing W , G, De, Dw and optimizing F
When we fix W and G, and De, Dw, the objective function in Equation (6) becomes:

Fi,j =

{
1, j = arg min

k
Dii

e

∥∥W T xi − gk

∥∥2

2

0, otherwise
(8)

Certainly, the optimal solution of F is equal to the cluster indicator matrix assigned
by the traditional K-means on projected data XT W with given cluster center.
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Step 2: Fixing F , W , De, Dw and optimizing G
By fixing F and W , De and Dw, the objective function in Equation (6) equals:

L(G) = Tr
((

XT W − FGT
)T

De

(
XT W − FGT

))
(9)

Taking the deviation of L(G) w.r.t. G, we have:

∂L(G)

∂G
=

∂
(
Tr

(
W T XDeX

T W − 2W T XDeFGT + GF T DeFGT
))

∂G

=
∂

(
Tr

(
GF T DeFGT − 2W T XDeFGT

))
∂G

= GF T DeF − W T XDeF

(10)

Let the above equations equal zero, and we arrive at:

G = W T XDeF
(
F T DeF

)−1
(11)

Step 3: Fixing F , G, De, Dw and optimizing W
By fixing F and G, De and Dw, the objective function in Equation (6) can be reformu-

lated as:

min
W T W=I

Tr
(
W T XDeX

T W − 2W T XDeFGT
)

+ γTr
(
W T DwW

)
(12)

By setting the derivation of Equation (11) w.r.t. W to zero, we arrive at:

W =
(
XDeX

T + γDw

)−1
XDeFGT (13)

Step 4: Fixing F , G, W and updating De, Dw with Equation (7)
According to the abovementioned optimization procedure, we propose an iterative ap-

proach to solving the problem in Equation (5). The iterative approach is illustrated in
Algorithm 1.

Algorithm 1: The optimization algorithm for problem (5)
Input:

The centered training data X ∈ Rd×n;
The parameters γ

Output:
Optimal W ∈ Rd×d, F ∈ Rn×c, G ∈ Rd×c;
Set t = 0 and initialize W0 ∈ Rd×d as an identity matrix;
repeat

Compute F t according to Equation (8);
Compute Gt according to Equation (10);
Compute W t according to Equation (13);
Update Dt

e and Dt
w according to Equation (7);

t = t + 1;
until Convergence
Return W , F , G

4. Experimental Results and Discussion. To evaluate the effectiveness of the pro-
posed algorithm, we applied it to several kinds of open benchmark datasets including
three image datasets (AR ImData, MSRA25, and Coil20) and three UCI datasets (Cars,
Vehicle, and Wine). We compared the proposed algorithm with three closely related
algorithms. A brief description of these compared algorithms is listed as follows.

KM: The traditional clustering algorithm, which performs clustering with all features
preserved. It is used as the baseline method in this paper.
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LPPKM: A two-stage subspace learning based on local manifold learning and K-means
clustering. It uses locality preserving projections (LPP) to get low-dimensional features,
following the cluster labels calculation via a standard K-means clustering subsequently.

LDAKM: A joint subspace clustering that combines LDA and K-means in a coherent
way to adaptively select the most discriminative subspace.

4.1. Experimental setup. In our experiments, all the parameters (if any) of our al-
gorithm and the compared algorithms are tuned from {10−6, 10−4, 10−2, 1, 102, 104, 106}.
The evaluation procedures are repeated 5 times. Then the average results with standard
deviation are reported. Following [14], Accuracy (ACC) is used as the evaluation metric.
Denote gi as the ground truth label of xi and qi as the clustering results. ACC is defined
as:

ACC =

n∑
i=1

δ(gi,map(qi))

n
(14)

where δ(x, y) = 1 if x = y; δ(x, y) = 0, otherwise. map(.) is the best mapping function
that matches the ground truth label and obtained cluster label using Kuhn-Munkres
algorithms. A larger ACC indicates a better performance.

Table 1. A brief description of the selected datasets

Dataset Size (n) Classes Features
AR ImData 840 120 768
MSRA25 1799 12 256
Coil20 1440 20 1024
Cars 392 3 8

Vehicle 846 4 18
Wine 178 3 13

4.2. Experimental results for multimedia understanding. Table 2 illustrates the
results for clustering on six datasets. We can conclude the following. 1) LPPKM fails
KM on most of the selected datasets. The main reason might be the separation of dimen-
sion reduction and clustering. However, as the dimension is considerably reduced, the
speed of clustering will be improved. 2) LDA outperforms KM on these datasets except
for Coil20, which demonstrates that jointly performing dimension reduction is beneficial
to the subspace clustering. 3) Our algorithm achieves the best results compared with
the other algorithms by imposing the robust l2,1-norm based loss function and low-rank
regularization into a joint objective function.

Table 2. Performance comparison in terms of ACC (±Standard Deviation (%))

AR ImData Cars Coil20 MSRA25 Vehicle Wine
KM 30.90 ± 0.30 44.90 ± 0.00 47.47 ± 1.70 51.28 ± 0.96 44.15 ± 0.37 64.48 ± 0.77

LPPKM 24.31 ± 1.19 45.31 ± 0.14 47.27 ± 1.54 48.40 ± 5.81 44.00 ± 0.58 60.00 ± 6.03
LDAKM 24.88 ± 0.54 44.90 ± 0.00 43.27 ± 3.59 54.26 ± 3.35 44.30 ± 0.84 67.75 ± 5.52
OURS 31.21 ± 0.31 46.68 ± 0.00 50.54 ± 1.25 59.54 ± 1.71 45.27 ± 0.00 70.79 ± 0.40

4.3. Convergence analysis. Following previous works [12,15], it can be easily verified
that the iterative optimization method in Algorithm 1 will converge to a local minimum.
In this section, we conduct an experiment to study the convergence speed of our algorithm.
The parameter γ of our algorithm is set to 1, which is the median of the tuned range.
Figure 1 shows the results on three datasets, i.e., AR ImData, Cars, and Wine. From the
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(a) AR ImData (b) Cars

(c) Wine

Figure 1. Convergence analysis of the proposed algorithm

results, we can observe that our algorithm converges fast, concretely, within 40 iterations
for these three datasets.

4.4. Parameter sensitivity analysis. In this section, we study the parameter sensi-
tivity of the proposed algorithm. Our algorithm has only one parameter γ. In Figure 2,
we show the clustering performance influence of this parameter on different applications
using AR ImData, Wine, and MSRA25 datasets. For each dataset, we independently
run our algorithm 5 times with the tuned parameter γ and report the average results.
Note that γ is used to control the sparsity of transform matrix W . The larger γ is, the
sparser W will be. From the results, we can observe the following. 1) A sparse transform
matrix W is helpful for improving clustering performance. For example, the clustering
accuracy increases when the parameter γ arises and is smaller than 1 for AR ImData and
Wine datasets. 2) Higher sparsity of W does not always reflect better results. Concretely,
when γ > 104 for AR ImData and MSRA25 datasets, the clustering accuracy significantly
decreases.

5. Conclusions. In this paper, to overcome the shortcomings of traditional K-means
clustering, we proposed an l2,1-norm based K-means clustering with low-rank regulariza-
tion. Compared with several K-means based subspace clustering algorithms, our algo-
rithm is efficient and is able to find the most representative features by performing sparse
learning and clustering simultaneously. As proposed algorithm is non-smooth, we solved
it using an iterative approach. Empirical results on six benchmark datasets showed the
effectiveness of the proposed algorithm. In the future work, we will combine our method
with fuzzy system to different application domains.
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Figure 2. Performance variance w.r.t. γ on three datasets
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