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Abstract. In this paper, we first present the generalized two-parameter overrelaxation
(GTOR) iterative method for solving linear system Ax = b. Two kinds of preconditioners
S̃ are proposed. We set A and S̃ to be the same 2×2 block structure. Next, we provide the
convergence analysis. The results show that our preconditioners increase the convergence
rate of the GTOR iterative methods. Finally, we give the iterative algorithms and present
a numerical example to illustrate the theoretical results.
Keywords: Preconditioned GAOR iterative method, Preconditioned GTOR iterative
method, Irreducible, Central difference scheme

1. Introduction. In this paper, we consider the following linear system:

Ax = b, (1)

where A ∈ Rn×n is a nonsingular matrix and x, b ∈ Rn.
To solve the linear system (1), the generalized accelerated overrelaxation (GAOR) iter-

ative method has been used widely where A is split into A = I−L−U (see [1, 2, 3, 4, 5]).
As is well-known, all the elements in L and U are considered as a whole in the GAOR
scheme. It does not seem reasonable since the case where the elements of A vary a lot in
magnitude usually occurs in practice. Thus, we also consider the case that the lower part
of A is split into two parts.

In this case, we assume that A = I − CL1 − CL2 − CU where I is the identity matrix,
CU is strictly upper triangular matrix, while CL1 and CL2 are strictly lower triangular
matrices, and then the two-parameter overrelaxation (TOR) iterative method is proposed
by [6, 7].

In order to accelerate the convergence rates of the GTOR iterative methods, an effective
way is to transform the original system into the preconditioned form

Ãx = b̃, (2)

where Ã = PA =
(
I + S̃

)
A and b̃ = Pb =

(
I + S̃

)
b.

Unlike the discussion in those papers, we set matrix A to be 2 × 2 block structure in
this paper. If CU is ordinary upper triangular matrix, in order to solve (1), using the
thought of dividing matrix to blocks, we split A as

A = I −
(

0 0
−C1 0

)
−
(

0 0
−C2 0

)
−
(

B1 −D
0 B2

)
,

1421



1422 J. YANG AND Y. DENG

where C = C1 + C2 = (cij)(n−p)×p, B1 =
(
b
(1)
ij

)
p×p

, B2 =
(
b
(2)
ij

)
(n−p)×(n−p)

and D =

(dij)p×(n−p). Thus, we get a generalized TOR (GTOR) iterative method which can be
defined by

x(k+1) = Tω,γx
(k) +

ω + γ

2
g, (3)

where

Tω,γ =

(
I 0

γ

2
C1 +

ω

2
C2 I

)−1 [(
1 − γ

2
− ω

2

)
I +

ω

2

(
0 0

−C1 0

)

+
γ

2

(
0 0

−C2 0

)
+

γ + ω

2

(
B1 −D
0 B2

)]
(4)

=

 (
1 − γ

2
− ω

2

)
I +

γ + ω

2
B1 −γ + ω

2
D

T21 T22

 (5)

with

T21 =
γ + ω

2

(γ

2
− 1
)

C1 −
(γ + ω)γ

4
C1B1 +

γ + ω

2

(ω

2
− 1
)
C2 −

(γ + ω)ω

4
C2B1,

T22 =
(
1 − γ

2
− ω

2

)
I +

γ + ω

2
B2 +

(γ + ω)γ

4
C1D +

(γ + ω)ω

4
C2D,

and

g =

(
I 0

γ

2
C1 +

ω

2
C2 I

)−1

b =

(
I 0

−γ

2
C1 −

ω

2
C2 I

)
b.

Set S̃ to be a 2 × 2 block matrix [8]

S̃ =

(
S 0
0 0

)
, (6)

where S is a p × p nonsingular matrix with p < n and P ∈ Rn×n. Obviously, S̃ is with
the same block form as matrix A.

Choosing different kinds of S, which is denoted by Si, (i = 1, 2, . . .), we can express the
coefficient matrix of (2) as

Ãi = I −
(

0 0
−C1 0

)
−
(

0 0
−C2 0

)
−
(

[B1 − Si (I − B1)] v − (I + Si) D
0 B2

)
,

i = 1, 2, . . . .

(7)

Then the preconditioned GTOR (PGTOR) iterative methods for solving (2) are defined
as follows

x(k+1) = T (i)
ω,γx

(k) +
ω + γ

2
g, i = 1, 2, . . . , (8)

where

T (i)
ω,γ =

(
I 0

γ

2
C1 +

ω

2
C2 I

)−1 [(
1 − γ

2
− ω

2

)
I

+
γ + ω

2

(
B1 − Si (I − B1) − (I + Si) D

0 B2

)
+

ω

2

(
0 0

−C1 0

)
+

γ

2

(
0 0

−C2 0

)]
(9)
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=

 (
1 − γ

2
− ω

2

)
I +

γ + ω

2
[B1 − Si(I − B1)] −γ + ω

2
(I + Si)D

T (i)
21 T (i)

22

 (10)

with

T (i)
21 =

γ + ω

2

(γ

2
− 1
)

C1 −
(γ + ω) γ

4
C1 [B1 − Si (I − B1)]

− (γ + ω) ω

4
C2 [B1 − Si (I − B1)] +

γ + ω

2

(ω

2
− 1
)

C2,

T (i)
22 =

(
1 − γ

2
− ω

2

)
I +

(γ + ω) γ

4
C1 (I + Si) D +

(γ + ω) ω

4
C2 (I + Si) D +

γ + ω

2
B2.

This paper is organized as follows. In Section 2, we first present some results, then
two kinds of preconditioners are proposed and the comparison conclusions are obtained,
which are not only between the preconditioned and original methods but also between
different preconditioned methods. The results show that our preconditioners increase the
convergence rate of the GTOR iterative method. In Section 3, algorithms are presented.
In Section 4, an example is proposed to show the effectiveness of the present algorithms.
Finally, Section 5 concludes the paper.

2. Convergence Analysis and Comparisons. For later reference, we need the follow-
ing results.

Lemma 2.1. [9] Let A be a nonnegative and irreducible n × n matrix. Then,

(i) A has a positive real eigenvalue equal to its spectral radius ρ(A).
(ii) To the spectral radius ρ(A), there corresponds an eigenvector x > 0 such that Ax =

ρ(A)x.

Lemma 2.2. [10] Let A be a nonnegative and irreducible n × n matrix. If 0 ̸= αx ≤
Ax ≤ βx, αx ̸= Ax, Ax ̸= βx for some nonnegative vector x, then α < ρ(A) < β and x
is a positive vector.

In (6), we take two kinds of S as follows.

S1 =


0 0 · · · 0
0 0 · · · 0
...

...
...

...
bp1

α
0 · · · 0

 , S2 =


0 0 · · · 0
0 0 · · · 0
...

...
...

...
bp1

α
+ β 0 · · · 0

 ,

where bij are related to b
(1)
ij in matrix B1, and α, β are randomly chosen real parameters.

We have

B1 − S1(I − B1) =


b11 b12 · · · b1p
...

...
...

...
bp−1,1 bp−1,2 · · · bp−1,p

bp1 −
bp1

α
(1 − b11) bp2 +

bp1

α
b12 · · · bpp +

bp1

α
b1p

 ,

B1 − S2(I − B1)

=


b11 b12 · · · b1p
...

...
...

...
bp−1,1 bp−1,2 · · · bp−1,p

bp1 −
(

bp1

α
+ β

)
(1 − b11) bp2 +

(
bp1

α
+ β

)
b12 · · · bpp +

(
bp1

α
+ β

)
b1p

 .



1424 J. YANG AND Y. DENG

Now, we first discuss the convergence of the PGTOR methods and give comparisons
between the GTOR and PGTOR methods.

Theorem 2.1. Let Tω,γ and T (1)
ω,γ be the iteration matrices associated to the GTOR and

PGTOR methods, respectively. If the matrix A in (1) is irreducible with D ≤ 0, B1 ≥ 0,
B2 ≥ 0, C1 ≤ 0, C2 ≤ 0, 0 < ω + γ ≤ 2, ω > 0, γ > 0, bp1 > 0, α > 0, α > 1 − b11, then

(i) If ρ (Tω,γ) < 1, then ρ
(
T (1)

ω,γ

)
< ρ (Tω,γ);

(ii) If ρ (Tω,γ) > 1, then ρ
(
T (1)

ω,γ

)
> ρ (Tω,γ).

Proof: From (7), we have

Tω,γ =


(
1 − γ

2
− ω

2

)
I +

γ + ω

2
B1 −γ + ω

2
D

γ + ω

2

(ω

2
− 1
)

C2

(
1 − γ

2
− ω

2

)
I +

γ + ω

2
B2


+

(γ + ω) ω

4

(
0 0

−C2B1 C2D

)
+

(
0 0

γ + ω

2

(γ

2
− 1
)

C1 0

)
+

(γ + ω) γ

4

(
0 0

−C1B1 C1D

)
.

(11)

Since D ≤ 0, B1 ≥ 0, B2 ≥ 0, C1 ≤ 0, C2 ≤ 0, 0 < ω + γ ≤ 2, ω > 0, γ > 0, it has
(
1 − γ

2
− ω

2

)
I +

γ + ω

2
B1 −γ + ω

2
D

γ + ω

2

(ω

2
− 1
)

C2

(
1 − γ

2
− ω

2

)
I +

γ + ω

2
B2

 ≥ 0,

(γ + ω) ω

4

(
0 0

−C2B1 C2D

)
+

(
0 0

γ + ω

2

(γ

2
− 1
)

C1 0

)

+
(γ + ω) γ

4

(
0 0

−C1B1 C1D

)
≥ 0,

and the matrix Tω,γ is nonnegative. Since A is irreducible, from (7), it is easy to see that
the matrix Tω,γ is also irreducible.

Similarly, since bp1 > 0, α > 0, we have S1 ≥ 0, then (I + S1)D ≤ 0, meanwhile, for

α > 1 − b11, we have B1 − S1(I − B1) ≥ 0, so it can be proved that the matrix T (1)
ω,γ is

nonnegative. The condition α > 1− b11 ensures that the matrix B1 − S1(I −B1) has the

same irreducibility as B1, so the matrix T (1)
ω,γ is also nonnegative and irreducible.

By Lemma 2.1, there is a positive vector x, such that

Tω,γx = λx, (12)

where λ = ρ(Tω,γ). Clearly, λ = 1 is impossible; otherwise, the matrix A is singular.
Hence, it gets either λ < 1 or λ > 1.

Now, from (12) and by the definitions of Tω,γ and T (1)
ω,γ , we have

T (1)
ω,γ x − λx

=
(
T (1)

ω,γ − Tω,γ

)
x

=

 −ω + γ

2
S1 (I − B1) −ω + γ

2
S1D

T (1)
21 − T21 T (1)

22 − T22

x

=

(
S1 0
M1 0

)(
−ω + γ

2
(I − B1) −ω + γ

2
D

0 0

)
x
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=

(
S1 0
M1 0

)(
−ω + γ

2
(I − B1) −ω + γ

2
D

T21 T22 − I

)
x

=

(
S1 0
M1 0

) (
1 − γ

2
− ω

2

)
I +

ω + γ

2
B1 −ω + γ

2
D

T21 T22

−
(

I 0
0 I

)x

=

(
S1 0

−1

2
(γC1 + ωC2)S1 0

)
(Tω,γ − I) x

= (λ − 1)

(
S1 0

−1

2
(γC1 + ωC2)S1 0

)
x

where

T (1)
21 − T21 =

γ + ω

4
(γC1 + ωC2)S1(I − B1),

T (1)
22 − T22 =

γ + ω

4
(γC1 + ωC2)S1D,

M1 = −1

2
(γC1 + ωC2)S1.

Since C1 ≤ 0, C2 ≤ 0, ω > 0, γ > 0, S1 ≥ 0, S1 ̸= 0 and x > 0, it derives(
S1 0

−1

2
(γC1 + ωC2)S1 0

)
x ≥ 0,

(
S1 0

−1

2
(γC1 + ωC2)S1 0

)
x ̸= 0,

(i) If λ < 1, then T (1)
ω,γ x − λx ≤ 0, T (1)

ω,γ x − λx ̸= 0. By Lemma 2.2, Theorem 2.1(i) is
proved.

(ii) If λ > 1, then T (1)
ω,γ x − λx ≥ 0, T (1)

ω,γ x − λx ̸= 0. By Lemma 2.2, Theorem 2.1(ii) is
proved.

Theorem 2.2. Let Tω,γ and T (2)
ω,γ be the iteration matrices associated to the GTOR and

PGTOR methods, respectively. If the matrix A in (1) is irreducible with D ≤ 0, B1 ≥ 0,

B2 ≥ 0, C1 ≤ 0, C2 ≤ 0, 0 < ω + γ ≤ 2, ω > 0, γ > 0, β ∈
(
− bp1

α
, bp1

(
1

1−b11
− 1

α

))
when

1 − b11 > 0 or β ∈
(
− bp1

α
, +∞

)
when 1 − b11 < 0, then

(i) If ρ (Tω,γ) < 1, then ρ
(
T (2)

ω,γ

)
< ρ(Tω,γ);

(ii) If ρ (Tω,γ) > 1, then ρ
(
T (2)

ω,γ

)
> ρ (Tω,γ).

Proof: When D ≤ 0, B1 ≥ 0, B2 ≥ 0, C1 ≤ 0, C2 ≤ 0, 0 < ω + γ ≤ 2, ω > 0, γ > 0,
Tω,γ is nonnegative and irreducible, it has been proved in Theorem 2.1.

Since (I + S2)D ≤ 0, B1 − S2(I − B1) ≥ 0, 0 < ω + γ ≤ 2, it can be proved that the

matrix T (2)
ω,γ is nonnegative. The condition β ∈

(
− bp1

α
, bp1

(
1

1−b11
− 1

α

))
when 1 − b11 > 0

or β ∈
(
− bp1

α
, +∞

)
when 1 − b11 < 0 ensures that the matrix B1 − S2(I − B1) has the

same irreducibility as B1, so the matrix T (2)
ω,γ is also nonnegative and irreducible.

The rest proof is similar to the previous proof in Theorem 2.1.
Then we also give comparisons between different PGTOR methods.

Theorem 2.3. Let Tω,γ be defined by (7), and T (1)
ω,γ and T (2)

ω,γ be defined by (10). Under
the assumptions of Theorems 2.1 and 2.2, then

(i) If β > 0, ρ (Tω,γ) < 1, then ρ
(
T (1)

ω,γ

)
> ρ
(
T (2)

ω,γ

)
;

(ii) If β > 0, ρ (Tω,γ) > 1, then ρ
(
T (1)

ω,γ

)
< ρ
(
T (2)

ω,γ

)
;
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(iii) If β < 0, ρ (Tω,γ) < 1, then ρ
(
T (1)

ω,γ

)
< ρ
(
T (2)

ω,γ

)
;

(iv) If β < 0, ρ (Tω,γ) > 1, then ρ
(
T (1)

ω,γ

)
> ρ
(
T (2)

ω,γ

)
.

Proof: The given conditions imply that the matrices Tω,γ, T (1)
ω,γ and T (2)

ω,γ are nonnegative

and irreducible. By Lemma 2.1 and the definitions of T (1)
ω,γ and T (2)

ω,γ , we have

T (1)
ω,γ x − T (2)

ω,γ x

=
(
T (1)

ω,γ x − λx
)
−
(
T (2)

ω,γ x − λx
)

=
[
L(1)

ω,γ − Lω,γ

]
x −

[
L(2)

ω,γ − Lω,γ

]
x

= (λ − 1)

(
S1 0

−1

2
(γC1 + ωC2) S1 0

)
x − (λ − 1)

(
S2 0

−1

2
(γC1 + ωC2) S2 0

)
x

= (λ − 1)

(
I 0

−1

2
(γC1 + ωC2) 0

)
(S1 − S2)x

Under the conditions of Theorem 2.1 and Lemma 2.1, we can know that(
I 0

−1

2
(γC1 + ωC2) 0

)
≥ 0, x > 0,

meanwhile, it is easy to know that
When β > 0, 0 ≤ S1 ≤ S2 and S1 ̸= S2, thus S1 − S2 ≤ 0, S1 − S2 ̸= 0,

(i) If λ < 1, then T (1)
ω,γ x − T (2)

ω,γ x ≥ 0, T (1)
ω,γ x − T (2)

ω,γ x ̸= 0.
By Lemma 2.2, Theorem 2.3(i) is proved.

(ii) If λ > 1, then T (1)
ω,γ x − T (2)

ω,γ x ≤ 0, T (1)
ω,γ x − T (2)

ω,γ x ̸= 0.
By Lemma 2.2, Theorem 2.3(ii) is proved.

When β < 0, S1 ≥ S2 ≥ 0 and S1 ̸= S2, thus S1 − S2 ≥ 0, S1 − S2 ̸= 0,

(iii) If λ < 1, then T (1)
ω,γ x − T (2)

ω,γ x ≤ 0, T (1)
ω,γ x − T (2)

ω,γ x ̸= 0.
By Lemma 2.2, Theorem 2.3(iii) is proved.

(iv) If λ > 1, then T (1)
ω,γ x − T (2)

ω,γ x ≥ 0, T (1)
ω,γ x − T (2)

ω,γ x ̸= 0.
By Lemma 2.2, Theorem 2.3(iv) is proved.

3. Algorithms. Based on the above analysis, the resulting algorithms are summarized
as follows.

Algorithm 1 (GTOR algorithm for solving (1)).
(1) Input n, ω, γ, p. Set x(0) = 0;
(2) Compute x(k+1) by (3);
(3) Stop if the stopping criteria

∥∥x(k+1) − x(k)
∥∥ < tol or k > max are satisfied; otherwise,

set k := k + 1, go to step (2).
Algorithm 2 (PGTORi (i = 1, 2) algorithms for solving (2)).

(1) Input n, ω, γ, p, α, β. Set x(0) = 0;
(2) Compute x(k+1) by (8). Set i = 1, 2, respectively;
(3) Stop if the stopping criteria

∥∥x(k+1) − x(k)
∥∥ < tol or k > max are satisfied; otherwise,

set k := k + 1, go to step (2).

4. Numerical Example. In all cases, all iterations were started from the zero initial
vector and terminated when

∥∥x(k+1) − x(k)
∥∥
∞ < 10−9, where x(k) denotes the kth iterative

vector for the corresponding iterative method. The maximum number of iterations of all
tests was 1000. All calculation results were obtained using the TOSHIBA computer of
which the CPU is Inter(R) Core(TM) 2 Duo, the computer memory is 2 G and the
operating system is Win7, and all test programs were written in Matlab 7.9.
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Example 4.1. Consider the following boundary value problem

∆u = 0, 0 < x < 2, 0 < y < 2 (13)

with boundary conditions

u(0, y) = 0, u(2, y) = y(2 − y), 0 < y < 2

u(x, 0) = 0, u(x, 2) =

{
x 0 < x < 1

2 − x 1 ≤ x < 2

When the central difference scheme on a uniform grid with N × N interior nodes
(N2 = n) is applied to this Equation (13), we can obtain a system of linear equations (1).
The test matrix A and vector b arise from five-point discretization of the second order
PDE ∆u = 0.

Then we test for the GTOR iterative method and its two preconditioned inversions. In
Table 1, GTOR stands for the GTOR method, PGTORi represent the PGTORi methods
which are with preconditioned matrix I + Si (i = 1, 2), respectively. We denote the
number of iterations by IT, and the program execution time by CPU. The parameters n,
ω, γ, p, α and β are randomly chosen parameters which meet the conditions of former
theorems and corollaries in Section 3 when we choose C1 = 2

3
C, C2 = 1

3
C.

Table 1. CPU time and the number of iterations of the GTOR algorithm
and two preconditioned GTOR algorithms

n ω γ p α β
GTOR PGTOR1 PGTOR2

IT CPU IT CPU IT CPU
400 0.8 0.5 100 2 1 534 0.359 534 0.328 516 0.317
900 0.8 0.5 300 3 2 523 3.338 523 3.119 507 2.808
1600 0.8 0.5 500 4 2 510 14.601 510 13.184 498 12.251
2500 0.8 0.5 1000 3 1 502 48.407 502 41.532 497 38.381

From Table 1, we can see that the PGTORi (i = 1, 2) algorithms are better than
the GTOR algorithm. In addition, the PGTOR2 algorithm is better than the PGTOR1
algorithm. Especially when the order of matrix A (namely n) is large enough, the time
advantage of the former methods is obvious. These conclusions are in accordance with
the theoretical results in Section 2.

5. Conclusions. In this paper, we have provided comparison results of several types of
PGTOR methods for solving a linear system (1). What really sets the matrix A and the
preconditioners apart is the block structure (6) which is seldom considered before, and we

can also consider the other three S̃, with S lying in other locations S̃ =

(
0 S
0 0

)
, S̃ =(

0 0
S 0

)
, S̃ =

(
0 0
0 S

)
. Furthermore, it is difficult to select the optimal parameters

of ω, γ, α and β. These all require further study.

Acknowledgment. The authors would like to thank the editor and referees for their
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