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Abstract. Tree modeling based on point cloud is a hot issue in computer graphics
research; furthermore, accurate three-dimensional canopy structure of fruit tree is an
important base for study of functional structure model. We present an efficient canopy
reconstruction modeling algorithm for fruit tree based on Laplacian contraction and tree
morphology constraints. Firstly, we establish directed graph by using k nearest neighbor
connection and Laplacian contraction to improve the computational efficiency; and then,
a connecting edge weights model is constructed based on the tree knowledge to break off
the error close-loops of directed graph, and a cone projection method is used to smooth
splicing in directed graph. Finally, a radius solving approach is proposed to repair small
branches by point cloud ring cutting. Point cloud data of different morphology fruit trees
is used to evaluate the proposed algorithm; the experimental results show that the canopy
structure reconstructed by this algorithm is accurate and robust. The constructed canopy
could support the applications both in virtual modeling and experimental simulations.
Keywords: Point cloud density, Canopy reconstruction, Fruit tree, Laplacian contrac-
tion, Morphology constraints

1. Introduction. In recent years, with the improvement of the accuracy and the scan-
ning range of 3D laser scanner, it is widely used to obtain dense point cloud of large
irregular objects such as fruit trees canopy. The canopy structure of fruit tree has an
important impact on the distribution light, photosynthetic productivity and physiological
state organs in the crown [1-3]. So, modeling 3-D trees is a hot research topic in the field
of computer graphics. Modeling 3D fruit trees is a challenging task for several well-known
reasons, including complex structure and severe occlusions. In the past decades, many
methods have been put forward [4-7]. The method scanning-based [8] is widely studied
because of its high precision; some of the famous methods include Laplacian smoothing
[9,10], directed graph construction [11,12], space colonization [13], global knowledge con-
straint [14], data driven [15] and so on. However, these methods are not robust enough
for dense points cloud and complex branches.

In this paper, we present a novel algorithm for extracting the curve skeletons of fruit
tree models to solve the reconstruction accuracy problems as illustrated in Figure 1. The
experimental results show that our method is accurate and robust for different fruit trees
morphology point cloud.
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Figure 1. The algorithm flow chart

(a) (b) (c)

Figure 2. Point cloud scanning, (a) the entity of pear tree, (b) the scan-
ning point cloud, and (c) the key points of contraction by 4 iterations

2. Point Cloud Scanning. We use FARO Laser Scanner Focus3D to obtain the point
cloud data of fruit trees in leaf fall period. In order to obtain a higher precision, each tree
was scanned vertically by 90 degrees, a total of four stacks, the scanning scene and the
scanning point cloud effect are shown in Figure 2. In the case of decade raw pear tree,
the number of point clouds is about 550,000 after isolated point denoise.

3. The Algorithm.

3.1. Point cloud contraction. The geometric contraction of the point cloud is imple-
mented on the basis of implicit Laplacian smoothing [9]. In order to improve the efficiency
of the algorithm, the point cloud curvature sampling algorithm is used [16], the experience
has shown that the data is still valid at 10% ratio sample, the point cloud data is stored
in the matrix P . As stated in [9], a planar Delaunay triangulation of these points can be
constructed easily, and then a Laplacian matrix L is constructed with cotangent weights.
The contraction is computed by iteratively solving the linear system:[

W t
LLt

W t
H

]
P t+1 =

[
0

W t
HP t

]
(1)

where L is an n × n Laplacian matrix with cotangent weights, P is the contracting
point cloud, WL and WH are the diagonal weight matrices balancing the contraction and
attraction forces. In general, the point clouds achieve their convergence within a small
number of iterations (Figure 2(c)).

3.2. Rough connection. By the previous section method, the point cloud becomes a
skeletal shape; however, the contraction nodes are isolated. So we first construct an
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incomplete graph on G by constructing node k nearest neighbor, and introduce neighbor
distance to reduce the noise edges:

d =
2

n(k − 1)

n∑
i=1

k−1∑
j=1

dij (2)

If the distance between the node and k neighbor nodes is greater than d, the adjacent
edge is not connected, usually k = 3. It is obvious that, if the k ≥ 3, there are a lot
of error triangle closed loops in the incomplete graph (Figure 3). For the left of Figure
3, the noise edge is removed if the side edge corresponding vertical angle is greater than
90 degrees. For the right of Figure 3, the noise edge is removed if the edge has the least
neighbor points (In Figure 3 right, the number of neighbor points of edge −→pp1,

−→pp2,
−−→p1p2 is

6, 5, 2. So the edge −−→p1p2 is removed). After the implementation for every node, we obtain
a two-way connected tree that looks like the skeleton but has some noise edges (Figure
4).

Figure 3. The error triangle closed loop

Figure 4. The k nearest neighbor connected tree

3.3. Closed loop breaking. According to the tree structure knowledge, there is no
closed loop in the directed graph. So, we present a method by calculating fracture weights
of the directed edges based on the tree knowledge to break off the error close-loops of
connected graph. In the tree structure, the nearest neighbor nodes have two principles
(coplanar and growth isotropic); therefore, we built edge connectivity weight solution
formula:

W = Ws ∗ Wc (3)

where Ws is coplanar weight, Wc is growth isotropic weight, the minimum weight of the
edge is removed. For coplanar principle (Figure 5(a)), we use the least square method to
fit the closed loop [17], namely, to solve the equation:

ax + by + cz + d = 0, e =
n∑

i=1

d2
i → min, Ws = 1/di + 1/di+1 (4)
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(a) (b)

Figure 5. Principle of tree growth, (a) the coplanar principle and (b) the
growth isotropic principle

(a) (b)

Figure 6. Directed graph splicing, (a) vertebral body mapping, (b) results splicing

For growth isotropic principle (Figure 5(b)), the case has been described in Section 3.1,
and is also applicable for the multi point closed loop, with the edge of the angle of more
than 150 degrees as the edge of the convergence constraint, so the growth isotropic weight
of the edge: Wc = t, which is the number of nodes on adjacent edge.

3.4. Directed graph splicing. The directed graph is incomplete connected due to lack
data (Figure 6(a)). We are inspired by [18], a cone is established in tangent direction of
directed graph, we search for the best connection points within the cone range, and then,
the connection points are connected by B-Spline fitting.

3.4.1. The main branch of directed graph. First of all, we find all single adjacent node of
the directed graph, then the largest growth direction angle of each single adjacent node is
calculated, and finally, we determined that the access point is the smallest growth angle
based on the principle of the branches grow upward. So, the main branch is the connecting
edge from the access node to the nearest branch node.

3.4.2. Directed graph splicing. We construct a cone in the separation nodes of directed
graph. The vertex of cone is the access point p, the axis of cone is the main branches
tangent and cone angle is α (45 degrees), then, in the cone range we search for the best
connection point which is nearest to the tangent distance, and its radius is thicker than
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the access point. Finally, B-Spline fitting is established between the access node and the
main branch node to achieve the smooth splicing of the separate graph (Figure 6(b)).

3.5. Small branch repairing based on branch radius. After the above algorithm,
we get a complete directed tree. However, the Laplacian algorithm is not sensitive to
small branches. We find the missing small branches point cloud data can be found by
ring cutting the directed tree on the basis of the original point cloud. In order to obtain
accurate ring cutting operation, firstly we plane ring cut the original point cloud along
the edge of the directed tree, and then, the radius is solved by the least square circle
fitting the points on the plane. The density-based spatial clustering algorithm [19] is used
on missing the points cloud data, and we obtain new nodes, which are connected to the
directed tree in accordance with the above algorithm. Thus, the small branches were
repaired to the directed tree (Figure 7).

(a) (b)

Figure 7. Branch repairing based on radius: (a) the point clouds in each
rectangle are missing small branches, and (b) repaired directed connected
tree

(a) (b) (c) (d)

Figure 8. Reconstruction result visualization, (a) and (c) original point
cloud of apple and pear trees, (b) and (d) corresponding reconstruction
results

4. Result. The whole fruit tree canopy is completed based on our method, and tree
modeling process generally takes less than 10 minutes on a standard PC with 2G CPU.
The reliability of the method is validated by some different fruit tree point clouds including
apple, pear, citrus trees, etc. The results demonstrate that our algorithm is accurate and
robust for different fruit trees morphology point cloud, 3-D fruit tree visualizations as
shown in Figure 8. We compare our method with the work in [10]; the results show that
our method can reconstruct smaller branches, have better smoothness and more precise
branching structure, as shown in Figure 9.
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(a) (b)

Figure 9. (a) 3-D tree skeleton obtained by the method in [10], and (b)
3-D tree skeleton using our method

5. Conclusions. In this paper, we present a novel algorithm for extracting the curve
skeletons of fruit tree models to solve the reconstruction accuracy problems. The experi-
mental results show that the 3-D fruit trees using our method are accurate and robust for
different fruit trees morphology point cloud. The accuracy of the reconstructed model can
meet the needs of the virtual experiment of the agricultural personnel, and our method
provides an efficient data acquisition means of canopy structure for the research of the
functional structure model of fruit trees. However, our method has low accuracy on the
point cloud tree with leaf. In the future, we will study the leaf point clouds segmentation
method to overcome this problem.
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