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Abstract. This paper investigates state estimation for linear discrete-time control sys-
tems where sensors and controllers are geographically separated and connected via a
bandwidth-limited communication channel. In particular, we consider the case at the
extreme data-rate limit (namely, when the data rate decreases to its theoretical minimum
value). In this case, it is possible to ensure observability of the system without the dis-
turbances when system matrix has only real eigenvalues each with geometric multiplicity
one. Conversely, observability is lost if the system cannot be decoupled, and the plant
states are mutually related. The illustrative examples are given to demonstrate the effec-
tiveness of the proposed scheme.
Keywords: State estimation, Data-rate limit, Observability, Networked control systems

1. Introduction. Communication constraints arise when control systems employ non-
transparent communication links [1]. Such constraints include mainly random delays,
packet drop and data-rate limits [2]. In this paper, we are interested in data-rate con-
straints.

Control under communication constraints inevitably suffers signal transmission delay,
data packet dropout and measurement quantization which might be potential sources
of instability and poor performance of control systems [3]. [4] investigated the quantized
feedback control problem for stochastic time-invariant linear control systems. A predictive
control policy under data-rate constraints was proposed to stabilize the unstable plant in
the mean square sense. [5] addressed LQ (linear quadratic) control of MIMO (multi-input
multi-output), discrete-time linear systems, and gave the inherent tradeoffs between LQ
cost and data rates. In [6], a quantized-observer based encoding-decoding scheme was
designed, which integrated the state observation with encoding-decoding. [7] addressed
some of the challenging issues on moving horizon state estimation for networked control
systems in the presence of multiple packet dropouts. The recent paper by Nair [8] ad-
dressed problems of information theory for nonstochastic variables and state estimation
for networked control systems. In particular, [8] proposed a formal framework for mod-
elling nonstochastic uncertain variables, and derived a necessary and sufficient condition
on zero-error capacity [9], and [10] for state estimation.

A high-water mark in the study of quantized feedback using data-rate limited feedback
channels is known as the data-rate theorem [1]. This states that linear control systems
are stabilizable or observable if the data rate of communication channels is larger than
a lower bound given. This result establishes some essential requirements for stability
of networked control systems [1]. However, it is still unclear whether such systems are
stabilizable or observable when the data rate decreases to its theoretical minimum value.
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In this paper, we focus on conditions on the data rate for observability of linear discrete-
time control systems, deal with the case at the extreme data-rate limit, and further develop
the data-rate theorem.

The remainder of this paper is organized as follows: Section 2 introduces problem
formulation; Section 3 deals with state estimation at the extreme data-rate limit; the
results of numerical simulation are presented in Section 4; conclusions are stated in Section
5.

2. Problem Formulation. Let us consider a linear time-invariant system

X(k + 1) = AX(k) + BU(k) ∈ Rn,
Y (k) = CX(k) ∈ Rp, k ∈ Z≥0

(1)

where X(k) ∈ Rn denotes the plant state, U(k) ∈ Rq denotes the control input, and
Y (k) ∈ Rp denotes the measured output. A, B, and C are known constant matrices with
appropriate dimensions. Without loss of generality, we assume that the pair (A,C) is
observable and the pair (A,B) is controllable. Furthermore, we assume that the initial
state X(0) is a bounded, uncertain variable satisfying ∥X(0)∥ ≤ ϕ0 < ∞.

The output signal Y (k) is causally encoded via an operator Θ as

C(k) = Θ(k, Y (0 : k)), k ∈ Z≥0. (2)

Each symbol C(k) is transmitted over a stationary memoryless uncertain channel without
channel feedback. D(k) denotes the received symbol. These received symbols are used to

produce a causal prediction X̂(k + 1) of X(k + 1) by means of another operator Ψ as

X̂(k + 1) = Ψ(k,D(0 : k)), k ∈ Z≥0, X̂(0) = 0. (3)

The pair (Θ, Ψ) is called a coder-estimator.

Let E(k) := X(k) − X̂(k) denote the prediction error. The system (1) is said to be
observable if the estimation error is bounded for any time k. Namely,

lim supk→∞ ∥E(k)∥ < ∞
holds for any initial state X(0) satisfying ∥X(0)∥ ≤ ϕ0 < ∞.

As stated in [1], a high-water mark in the study of quantized feedback using data-
rate limited feedback channels is known as the data-rate theorem. Let λi denote the ith
eigenvalue of system matrix A (i = 1, 2, . . . , n). It was shown in the data-rate theorem
that, the system (1) is stabilizable or observable if the data rate R of communication
channels satisfies the following inequality:

R >
∑

i∈Ξ log2 |λi|
with Ξ := {i ∈ {1, 2, . . . , n} : |λi| ≥ 1}. In this paper, the difference is that we argue
about the state estimation problem for linear time-invariant systems when the data rate
R is equal to the lower bound. Namely, we deal with the case at the extreme data-rate
limit, and further develop the data-rate theorem. Then, the main problem here is to
derive the condition for observability of the system (1) when the data rate decreases to
its theoretical minimum value.

3. Observability at the Extreme Data-Rate Limit. This section deals with the
state estimation problem at the extreme data-rate limit. Here, it is assumed that there
exists a real-valued nonsingular matrix H and a real-valued matrix Λ such that Λ =
HAH ′ = diag[J1, . . . , Jm] holds, where each Jj, j = 1, . . . , m, is a Jordan block of dimen-

sion (geometric multiplicity) nj. Here, we define X̄(k) := HX(k), X̃(k) := HX̂(k), and
Ē(k) := HE(k). Then, the system (1) can be written as

X̄(k + 1) = ΛX̄(k) + HBU(k) ∈ Rn,
Y (k) = CH ′X̄(k) ∈ Rp, k ∈ Z≥0.

(4)
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First, we consider the case with nj = 1 (j = 1, . . . , m). Namely, all the eigenvalues of
system matrix A are distinct. Then, we give the following result.

Theorem 3.1. Consider the system (1) with the coder (2) and estimator (3). It is
assumed that there exists a real-valued nonsingular matrix H and a real-valued matrix Λ
such that Λ = HAH ′ = diag[λ1, . . . , λn] holds. Then, the system (1) is observable if the
data rate R of communication channels satisfies the following equality:

R =
∑
i∈Ξ

log2 |λi|

with Ξ := {i ∈ {1, 2, . . . , n} : |λi| ≥ 1}.

Proof: Let Bl(c) denote the range {x : |x − c| < l} centered at c. We define

X̄(k) := [x̄1(k) x̄2(k) · · · x̄n(k)]′,

X̃(k) := [x̃1(k) x̃2(k) · · · x̃n(k)]′,
Ē(k) := [ē1(k) ē2(k) · · · ēn(k)]′.

By the assumption, we know that

x̄i(0) ∈ B∥H∥ϕ0(0), i = 1, 2, . . . , n.

Let ri denote the data rate corresponding to x̄i(k). If we assume that

x̄i(k) ∈ Bli(k)(ci(k)),
x̃i(k) = ci(k),

ēi(k) ∈ Bli(k)(0), i = 1, 2, . . . , n,

it follows that
x̄i(k + 1) ∈ Bli(k+1)(ci(k + 1)),

x̃i(k + 1) = ci(k + 1),
ēi(k + 1) ∈ Bli(k+1)(0), i = 1, 2, . . . , n,

where

li(k + 1) =

{
|λi|
2ri

li(k), when |λi| ≥ 1

|λi|li(k), when |λi| < 1

Then, we have

li(k) =

{ (
|λi|
2ri

)k

∥H∥ϕ0, when |λi| ≥ 1

(|λi|)k∥H∥ϕ0, when |λi| < 1
(5)

Clearly, it follows from (5) that

lim
k→∞

li(k) =

{
∥H∥ϕ0, when |λi| ≥ 1

0, when |λi| < 1
(6)

if the data rate ri satisfies the following equality:

ri = log2 |λi| (bits/sample).

Therefore, this gives

lim supk→∞ ∥E(k)∥ < ϕ0 < ∞,

if the data rate R satisfies the following equality:

R =
∑
i∈Ξ

log2 |λi| (bits/sample).

The proof is complete. �
It is shown in Theorem 3.1 that the system (1) is observable at the extreme data-rate

limit if all the eigenvalues of system matrix A are distinct. However, that is a special
case. Next, we address state estimation for general case, and give the following result.
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Theorem 3.2. Consider the system (1) with the coder (2) and estimator (3). It is
assumed that there exists a real-valued nonsingular matrix H and a real-valued matrix Λ
such that Λ = HAH ′ = diag[J1, . . . , Jm] holds, where each Jj, j = 1, . . . , m, is a Jordan
block of dimension (geometric multiplicity) nj. Suppose that at least one nj is larger than
1 and the corresponding eigenvalue has magnitude larger than 1. For the system (1),
the estimation error of the plant state is unbounded if the data rate R of communication
channels satisfies the following equality:

R =
∑
i∈Ξ

log2 |λi|

with Ξ := {i ∈ {1, 2, . . . , n} : |λi| ≥ 1}.
Proof: Using the same techniques as the proof of Theorem 3.1, we can show that for

the case with nj = 1,

li(k) =


(

|λi|
2ri

)k

∥H∥ϕ0, when |λi| ≥ 1

(|λi|)k ∥H∥ϕ0, when |λi| < 1
(7)

and for the case with nj > 1,

li(k) =


(

|λi|
2ri

)k

∥H∥ϕ0 +
k−1∑
d=0

(
|λi|
2ri

)d

li+1(k − 1 − d), when |λi| ≥ 1

(|λi|)k∥H∥ϕ0 +
k−1∑
d=0

(|λi|)dli+1(k − 1 − d), when |λi| < 1

(8)

Thus, it follows from (7) and (8) that for the case with nj = 1,

lim
k→∞

li(k) =

{
∥H∥ϕ0, when |λi| ≥ 1

0, when |λi| < 1

and for the case with nj > 1

lim
k→∞

li(k) =

{
∞, when |λi| ≥ 1
0, when |λi| < 1

if the data rate ri satisfies the following equality:

ri = log2 |λi| (bits/sample).

Therefore, this gives
lim supk→∞ ∥E(k)∥ = ∞,

if the data rate R satisfies the following equality:

R =
∑
i∈Ξ

log2 |λi| (bits/sample).

The proof is complete. �

4. Numerical Examples. This section contains numerical examples that illustrate the
utility of the results of Section 3.

Example 4.1. Consider the discrete-time control system[
x1(k + 1)
x2(k + 1)

]
=

[
4 0
0 8

] [
x1(k)
x2(k)

]
where λ1 = 4 and λ2 = 8. Here, we assume that x1(0) ∈ B2(0) and x2(0) ∈ B4(0).
Without loss of generality, we set x1(0) = 1.4 and x2(0) = 2.6, respectively.

In this example, we examine the state estimation problem at the extreme data-rate
limit. Here, we set R = 5 (bits/sample). The corresponding simulation is given in Figure
1. Here, ē1(k) and ē2(k) denote the estimation errors of x1(k) and x2(k), respectively. It
can be seen that the estimation errors are bounded as k → ∞.
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Figure 1. The initial condition response of the system in Example 4.1

Example 4.2. Consider the discrete-time control system[
x1(k + 1)
x2(k + 1)

]
=

[
4 1
0 4

] [
x1(k)
x2(k)

]
where λ1 = λ2 = 4. Here, we assume that x1(0) ∈ B2(0) and x2(0) ∈ B4(0). In this
example, we examine the state estimation problem at the extreme data-rate limit when
system matrix has eigenvalue with geometric multiplicity larger than one. Here, we set
R = 4 (bits/sample). The corresponding simulation is given in Figure 2. Here, ē1(k) and
ē2(k) denote the estimation errors of x1(k) and x2(k), respectively. It can be seen that the
estimation errors are unbounded as k → ∞.

Figure 2. The initial condition response of the system in Example 4.2
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5. Conclusions. In this paper, we considered linear discrete-time control systems with
data-rate constraints, argued about the state estimation problem when the data rate
decreased to its theoretical minimum value, and presented conditions for observability at
the extreme data-rate limit. The simulation results have illustrated the effectiveness of
the proposed scheme. The study of nonlinear system with limited information rates will
be our future work.
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