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Abstract. To address the challenge of real-time locating in complex indoor environ-
ments, we propose a novel scheme of indoor collaborative localization using multiple
Micro-Electro-Mechanical System (MEMS) sensor nodes. The MEMS sensor node is
modified and integrated with a Radio Frequency (RF) module which assists the node in
communicating with the Base Station (BS). All the nodes can realize autonomous lo-
cating based on Pedestrian Dead Reckoning (PDR) algorithm, then transmit their latest
position information to the BS to form real-time global topology and further achieve co-
llaborative locating. We evaluate the proposed scheme in several indoor environments,
and the experimental results demonstrate that the error ratio of locating among multiple
nodes is 2.7%. Moreover, the proposed scheme requires less power and communication
bandwidth, and it is practical for many relevant application fields.
Keywords: Indoor cooperative localization, MEMS sensor, Inertial navigation, Pedes-
trian dead reckoning

1. Introduction. Recent years have witnessed the rapid development of mobile commu-
nication technologies, and the location-oriented techniques and services become more and
more popular. Since there exist many unknown factors in some special indoor environ-
ments, such as fire escape and confined space which are out of the coverage of Global
Positioning System (GPS) [1, 2], it has great difficulties in getting people’s locations in
these hostile environments. Thus, localizing people’s positions in complex and dangerous
indoor environment [3, 4, 5] receives lots of attention. For instance, in a burning build-
ing, if the fireman knows his exact position, he can evacuate as quickly as possible when
critical events occur; or he can rescue his injured companions in time if he knows his
companions’ positions. This has important significance to the society.

Nowadays, domestic and foreign scholars have conducted a lot of researches on indoor
localization. Two widely applicable localization techniques are Bluetooth based localiza-
tion [6, 7, 8] and WiFi based localization [9]. Bluetooth based localization is suitable
for close-distance scenario and its resolution lies in 3 ∼ 5m, and Bluetooth usually has
low penetrability which prevents it from locating people in different rooms. WiFi based
localization involving wireless local area networks (WLANs) can realize small-scale local-
ization, and it requires low cost and less base stations. However, WiFi signal is sensitive to
external interference and needs higher transmission power compared with low-frequency
signals, and it easily makes mistakes when locating different floors.

With the development of Micro-Electro-Mechanical System (MEMS), the size of sensors
gets smaller and smaller and the cost keeps reducing, which fosters the MEMS sensor based
inertial navigation technique. The inertial navigation technique can achieve high accuracy
and has autonomy and continuity in the aspect of localization [10]. Since general MEMS
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sensor nodes can only figure out their own positions, it is necessary to let every node have
knowledge of others in the same space.

In this paper, we propose a novel indoor collaborative localization using multiple mod-
ified MEMS sensor nodes. The proposed scheme is based on the inertial navigation tech-
nique, and all the nodes are mounted with the 433 MHz radio frequency (RF) modules;
the design diagram is shown in Figure 1. The nodes autonomously calculate their latest
position by Pedestrian Dead Reckoning (PDR) and transmit the information to the Base
Station (BS), and the BS gathers all the position information to form the global topol-
ogy, which realizes collaborative localization among nodes. This achieves higher locating
accuracy compared with Received Signal Strength Indicator (RSSI) based methods. Be-
sides, considering that 433 MHz signals experience less transmission attenuation and have
good ability of penetration and diffraction, they can travel longer distance compared with
Bluetooth and WiFi signals, which extends the range of localization.

The rest of paper is organized as follows. We explain autonomous locating in Section 2
and introduce collaborative locating in Section 3. Section 4 describes the implementation
and evaluates the results. We conclude our work in Section 5.

Figure 1. Design diagram of MEMS sensor node

Figure 2. The basic process of PDR algorithm

2. Autonomous Locating. Given a known initial position, PDR utilizes the course an-
gle and step length extracted from the MEMS sensors to calculate the relative displace-
ment, and further locates the latest position of the pedestrian [11]. Figure 2 illustrates
the basic process of PDR. The estimates of course angle and step length are shown as
follows.

2.1. Course angle. Before calculating the course angle (expressed as γ), we need firstly
get the pedestrian’s pitch angle (expressed as α) and roll angle (expressed as β) from the
3-axis MEMS accelerometer, whose axes coincide with the pedestrian’s carrier coordinate
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axes. In carrier coordinate system, the output f b of 3-axis accelerometer can be expressed
as

f b =
[

f b
x f b

y f b
z

]T

, (1)

where f b
x, f b

y and f b
z are three components of different axes, respectively. Moreover, in

geographic coordinate system, the output is indicated as f n:

f n = [0 0 g]T , (2)

where g is the measurement of gravitational acceleration. And the transformational rela-
tion between f b and f n is
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Therefore, pitch angle α and roll angle β can be calculated using the following equation:
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In order to obtain the course angle γ, a 3-axis magnetometer is also needed and its
axes coincide with the carrier coordinate axes. In carrier coordinate system, the magnetic
strength reported from the magnetometer is expressed as

H b =
[

Hb
x Hb

y Hb
z

]T

. (5)

The magnetic strength components projected on the horizontal plane in geographic coor-
dinate system can be transformed as

Hn
x = Hb

x cos β + Hb
z sin β,

Hn
y = Hb

x sin α sin β + Hb
y cos α + Hb

z sin α cos β.
(6)

Thus, the course angle γ can be calculated with the following equation:

γ = arctan
(

Hn
y /Hn

x

)

. (7)

2.2. Step length calculation. Step length calculation is based on the empirical model
[12], which is formulated as

dstep = C 4
√

Amax − Amin,

C =
dreal

destimated

,
(8)

where Amax and Amin represent the maximum and minimum values of the accelerometer
respectively in every step period, C is the calibration coefficient, dreal and destimated sep-
arately denote the real value and estimated value of formerly statistical results and vary
with different pedestrians.

We can adjust C and obtain accurate estimate of the step length for every specific
pedestrian. The empirical model has low time complexity, which can help to reduce the
response time of the system.

2.3. Single node position calculation. As it is shown in Figure 3, provided that the
initial position is (x0, y0), and the course angle and step length of the kth step are dstep(k)
and γk (k = 1, 2, 3, · · · ), thus the current position (xk, yk) of the pedestrian can be written
as

{

xk = x0 +
∑k

i=1
dstep(i) cos γi

yk = y0 +
∑k

i=1
dstep(i) sin γi

. (9)
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Figure 3. The principle of PDR

Figure 4. The communication
between BS and each node

Figure 5. Design dia-
gram of the BS

Figure 6. The global topology of n nodes

With the latest information of course angle and step length extracted from the MEMS
sensors, every node can locate its own position in real time.

3. Collaborative Locating. To realize collaborative locating, one BS is required to col-
lect the positions of all mobile nodes and form the global topology. The BS communicates
with the MEMS nodes through the 433MHz wireless channel and reports information to
the PC through a cable as shown in Figure 4. And the design diagram of the BS is
illustrated in Figure 5.

The wireless network is built up in a self-organizing manner, and the global topology
is updated in real time. As is shown in Figure 6, there exists n + 1 nodes in an a × b
rectangular region, and the vertexes of the region are A(0, 0), B(a, 0), C(0, b) and D(a, b).
At some time, the reported positions of n nodes are (x0, y0), (x1, y1), · · · , (xn−1, yn−1) and
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(xn, yn). Assume that the distances and drift angles between p0 and other n nodes are d1,
d2, · · · , dn, and θ1, θ2, · · · , θn, respectively. According to the following transformation:
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we can calculate the exact distances and drift angles of p0 and other nodes. Therefore,
every node can have the knowledge of others’ positions using the global topology.

Since mobile nodes have the ability of autonomous locating and can communicate with
the BS all the time as long as the links are connected, these all help to achieve accurate
and large-scale collaborative localization in complex indoor environments.

4. Experiment and Evaluation.

4.1. Experiment setup. The MEMS sensor of every mobile node consists of one
SCA3000-D01 capacitive accelerometer and one SMAG3 magnetometer, and the 16-bit
MSP430F5438 micro-processor is selected for both mobile node and the BS. All the mobile
nodes communicate with the BS using Si4432 RF chips through the 433MHz frequency
band. A 3.3GHz Intel Core(TM) i5 CPU 8GB RAM laptop, which is used to generate
global topology and record pedestrians’ trajectories, connects with the BS by an RS232-
to-USB cable.

Each mobile node is fixed to the lumbar spine of a person (shown in Figure 7), and
we select two different sites, the No.1 teaching building and an underground parking of
our campus, to conduct pedestrian walking test. The process of our proposed scheme is
illustrated in Figure 8.

4.2. Single node locating test. We test single modified sensor node on the 50m × 50m
hollow-square corridor surrounding the classrooms of the No.1 teaching building and a
50m × 50m region of the underground parking. There are more obstacles in the teaching
building compared with that in the parking. The pedestrian stands at one vertex (initial
position) of the square region and walks along the corridor or the edge of square, and
his trajectories are recorded by the laptop as shown in Figure 9. We conduct the single
node locating test for 10 times, and the results are listed in Table 1, where dbuilding and
dparking represent the estimated distances in teaching building and underground parking,
respectively.

Figure 7. The mobile node is fixed to the lumbar spine of each pedestrian.
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Figure 8. System process-
ing flow

Figure 9. The pedestrian’s
trajectory in the parking

Table 1. Results of single node locating test

No.
True value

(m)
dparking

(m)
Error
(m)

dbuilding

(m)
Error
(m)

1 200 201.6 1.6 202.4 2.4
2 200 198.8 1.2 201.8 1.8
3 200 200.5 0.5 198.5 1.5
4 200 201.3 1.3 202.7 2.7
5 200 197.9 2.1 197.9 2.1
6 200 200.3 0.3 198.3 1.7
7 200 201.6 1.6 202.6 2.6
8 200 197.2 2.8 199.0 1.0
9 200 201.3 1.3 201.9 1.9
10 200 197.4 2.6 197.4 2.6

The average locating errors in the teaching building and the parking are 2.03m and
1.53m, respectively. Although the obstacles do have influence on locating, the error ratios
are still lower than 1.5% while the error of GPS is about 5.0%. Thus, the proposed scheme
is resilient to different indoor environments.

4.3. Multi-node collaborative locating test. The multi-node collaborative locating
test is conducted on a 100m × 100m square region of the underground parking. Four ver-
texes are separately set as the initial positions of pedestrians p1 ∼ p4, and the coordinates
are (0, 0), (0, 100), (100, 100) and (100, 0). We evaluate the performance of collaborative
locating from two aspects: walking along fixed path and unfixed path.

4.3.1. Walking along fixed path. The pedestrians are asked to walk along the edges of the
square in clockwise direction, and stop when arriving at the next vertexes. The test is
conducted for 10 times. Figure 10 illustrates the trajectories of four pedestrians in one
round, and the locating results are recorded in Table 2, where d1 ∼ d4 separately denote
the moving distances of pedestrians p1 ∼ p4.

As shown in Table 2, the errors of all test rounds are lower than 3m and the totally
average error is 2.19m.
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Figure 10. Walking along
fixed path

Figure 11. Walking along
unfixed path

Table 2. Results of collaborative locating along fixed path

No.
True

distance
(m)

Estimated
d1 (m)

Estimated
d2 (m)

Estimated
d3 (m)

Estimated
d4 (m)

Average
error (m)

1 100 102.4 98.4 101.7 100.5 1.6
2 100 101.8 102.7 103.1 98.8 2.2
3 100 98.5 104.0 101.5 102.9 2.5
4 100 103.7 99.2 95.7 102.1 2.7
5 100 97.9 101.9 100.5 98.7 1.5
6 100 99.3 104.1 102.0 103.3 2.5
7 100 102.6 96.8 101.9 99.0 2.2
8 100 99.0 103.0 98.8 97.1 2.2
9 100 101.9 102.9 98.6 103.4 2.4
10 100 97.4 102.1 103.7 99.4 2.3

Table 3. Results of collaborative locating along unfixed path

No.
True

d12 (m)
Estimated
d12 (m)

True
d13 (m)

Estimated
d13 (m)

True
d14 (m)

Estimated
d14 (m)

Average
error (m)

1 64.0 61.2 55.2 57.8 82.8 80.4 2.6
2 60.6 59.8 71.5 70.1 49.9 48.5 1.2
3 62.1 60.8 58.7 60.8 72.3 71.1 1.5
4 54.7 52.4 59.4 62.8 35.1 34.7 2.0
5 66.5 67.6 49.2 47.6 84.5 82.9 1.4
6 43.1 42.7 62.7 61.3 56.5 55.1 1.1
7 47.4 48.8 33.8 32.9 69.6 67.4 1.5
8 62.3 60.7 60.2 58.7 61.1 64.3 2.1
9 44.8 46.1 69.0 66.2 35.4 34.8 1.6
10 57.2 56.3 68.3 66.7 75.8 77.1 1.3

4.3.2. Walking along unfixed path. In this test scenario, all pedestrians are asked to walk
casually from their initial positions, and they are commanded to stop 5 minutes later.
Their trajectories in one round are plotted in Figure 11, and the distances between pedes-
trian p1 and other three pedestrians at the stop time are recorded in Table 3, where the
true values are measured by a meter rule, d12 represents the distance between p1 and p2,
d13 represents the distance between p1 and p3 and so on.
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The average error is 1.63m and the error ratio is 2.7%, which are acceptable in indoor
localization.

5. Conclusion. In this work, we proposed a novel scheme of indoor collaborative locating
using multiple mobile nodes. The node we made consists of an MEMS sensor and an RF
module, and it can realize autonomous locating based on the pedestrian dead reckoning
algorithm. In addition, every mobile node can transmit its real-time position information
to the BS to form the global topology which helps the nodes have the knowledge of
others. The experiments were conducted in several different scenarios, and the results
demonstrated that the locating errors were lower than 3m and the error ratio of locating
among multiple nodes is 2.7% in complex indoor environments. Since the cost of the
proposed method is low and it needs less communication bandwidth, it is practical for
many relevant fields.

We will continue to combine other efficient locating techniques to achieve much more
accurate indoor localization in our future work.
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