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Abstract. This paper investigates an adaptive nonlinear tracking control method for an
omnidirectional rehabilitative training walker with center of gravity shifts in the camera
space. A stochastic model is constructed to describe the influence of the center of gravity
shift and unknown visual servo parameters. An adaptive controller is designed to make
the tracking error system exponentially practically stable in mean square. It is proved
that the mean square of the tracking error can be made arbitrarily small by choosing
appropriate design parameters. The simulation results demonstrate the feasibility and
effectiveness of the proposed method.
Keywords: Omnidirectional walker, Center of gravity shifts, Adaptive control, Visual
servo

1. Introduction. An omnidirectional rehabilitative training walker (ODW) [1,2] is be-
ing developed to provide both walking rehabilitation and walking support to people with
walking impairments. To enhance the effectiveness of walking rehabilitation, the accuracy
of path tracking needs to be improved. However, in practical rehabilitative robot appli-
cations, inevitable influence factors such as the center of gravity shifts and uncertainty of
sensor measurement parameters, can seriously affect trajectory tracking.

In the control of an ODW, the robot states are usually assumed to be exactly detected
and constructed through sensor measurements. However, the ODW states from sensor
measurements were affected by perturbations. In this paper, a vision system using a cam-
era is introduced to obtain the Cartesian position information directly. It is well known
that deterministic models have limited ability to predict the behavior of a robot as it
operates in its environment, and so the research of systems with random disturbances
is meaningful. Other study [3] has proposed tracking control approaches for robot ma-
nipulators with external disturbances. In [4], a stochastic Hamiltonian dynamic model
and an adaptive backstepping state feedback controller were reported. Note that all of
the above stochastic models considered only the random noises that came from control
input channels. However, moving robots can have many unknown parameters, such as,
a variable arm-length robot manipulator [3] and a center of gravity shift in an ODW [1].
Due to the random parameters, it is nontrivial to design a controller achieving accurate
tracking with a fast response.

Motivated by the above observations, we list the main contributions of this paper
as follows. (I) With the application of stochastic theory, the random variation of the
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center of gravity shift in ODW operation is investigated. (II) By introducing a monocular
camera model to measure the posture information of the ODW, the stochastic model
becomes more complex when including unknown visual parameters, but the model has
more practical significance and will help us design a tracking controller in the camera space
directly. (III) An adaptive controller is proposed to maintain the tracking error tends to
an arbitrarily small neighborhood of zero, and so does its derivative. The simulation
results demonstrate the efficiency of the proposed scheme.

The remainder of this paper is organized as follows. The stochastic ODW model is
formulated in Section 2. The design of the adaptive tracking controller is proposed in
Section 3, and a stability analysis is conducted in Section 4. Simulation results are
presented in Section 5, and concluding remarks are given in Section 6.

2. Model of the ODW with a Monocular Camera and the Center of Gravity
Shifts. An image of the ODW is illustrated in Figure 1. The coordinate settings and
structure used to develop the tracking control for the ODW are shown in Figure 2.

Figure 1. ODW and omniwheel

Figure 2. Structure of ODW

The stochastic model with the center of gravity shift, in [5], is expressed as

dẊ(t) = M−1
1 B∗(θ)u(t)dt + M−1

1 NΣdw (1)

where

X(t) =

 x(t)
y(t)
θ(t)

 M1 =

 M + m 0 0
0 M + m 0
0 0 I0



B∗(θ) =

 − sin θ1 sin θ2 sin θ3 − sin θ4

cos θ1 − cos θ2 cos θ3 cos θ4

L L L L

 u(t) =
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f2
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N =

 −(M + m) sin θ θ̇2(M + m) sin θ −θ̇2(M + m) cos θ −(M + m) cos θ 0

(M + m) cos θ −θ̇2(M + m) cos θ −θ̇2(M + m) sin θ −(M + m) sin θ 0
0 0 0 0 1


Here, M is the mass of the ODW, m is the user’s equivalent mass, and I0 is the inertia mass
of the walker. The input forces are f1, f2, f3, and f4. w is a 5-dimensional independent
standard Wiener process. M−1

1 NΣdw depicts the influence of the center of gravity shift,
and Σ/2π is the power spectral density of the white noise. The angle between the x′

axis and the position of the first omniwheel is θ; as θ = θ1, then we have θ2 = θ + π/2,
θ3 = θ + π, and θ4 = θ + 3π/2. The distance from the center of the ODW to each
omniwheel is L.

Figure 3. ODW with a monocular camera

Generally, the configuration of robots can be obtained from the encoders of motors,
ultrasonic sensors, and other infrared sensors. However, for complex environments, it is
difficult to implement this strategy. Instead, we take advantage of the vision information
to deal with this challenge. As shown in Figure 3, a monocular camera is fixed to a
ceiling and the ODW is under the camera. The world frame x − y − o and the local
frame x′− y′−C are assumed to be parallel in the task space. Similarly, the image frame
X − Y −O and the camera frame X ′ − Y ′ −O2 are assumed to be parallel in the camera
space O1(o1x, o1y) is the crossing point between the optical axis of the camera and the
task space. The coordinate of the original point of the camera frame with respect to the
image frame is defined by O2(o2x, o2y), and Θ denotes the angle between the X ′-axis and
the x′-axis. The monocular camera model [6] yields.

Xm = ΛR(Θ)

 x
y
θ

 −

 o1x

o1y

0

 +

 o2x

o2y

0

 (2)

where

Xm =

 xm

ym

θm

 , Λ =

 α1 0 0
0 α2 0
0 0 1

 , R(Θ) =

 cos Θ sin Θ 0
− sin Θ cos Θ 0

0 0 1
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where α1 and α2 are unknown constants, which are dependent on the depth information,
focus length and scalar factors; xm, ym, and θm are the X-axis position, the Y -axis
position, and the orientation angle, respectively, in the image frame X − Y − O.

From (1) and (2), we can obtain the following stochastic model of the ODW with a
monocular camera:

dẊm = ΛR(Θ)M−1
1 B∗(θ)u(t)dt + ΛR(Θ)M−1

1 NΣdw (3)

Assumption 2.1. From the physical significance, camera parameters Λ and R(Θ), an-

gular velocity θ̇, ODW mass M and user’s equivalent mass m, are bounded, so a constant
h exists such that

∥Λ∥2
F ∥R(Θ)∥2

F

∥∥M−1
1

∥∥2

F

[
2θ̇4(M + m)2 + 2(M + m)2 + 1

]
∥Σ∥2

F ≤ h (4)

3. Adaptive Visual Servo Controller Design. The desired motion trajectory in the
camera space is Xdm, and the actual motion trajectory is Xm; then, we define the tracking
error as

e1 = Xm − Xdm (5)

e2 = ė1 + c1e1 = Ẋm − Ẋdm + c1e1 (6)

where c1 > 0 is a design parameter.
Combining (5) and (6) with system (3), we arrive at the following error systems

de1 = (−c1e1 + e2)dt

de2 = dẊm − Ẍdmdt + c1de1

=
[
ΛR(Θ)M−1

1 B∗(θ)u(t) − Ẍdm − c2
1e1 + c1e2

]
dt + ΛR(Θ)M−1

1 NΣdw
(7)

The Lyapunov function is defined as

V (x, t) =
(
eT
1 e1

)2
/4 +

(
eT
2 e2

)2
/4 + ãT H−1ã/(2γ) (8)

where the positive constant γ and the positive diagonal matrix H are the designed pa-
rameters. Vector a is composed by the diagonal elements of matrix Λ, which is defined

as a =
[

α1 α2 1
]T

. The estimation of a is â =
[

α̂1 α̂2 1
]T

and ã = â − a =[
α̃1 α̃2 0

]T
is the estimate error. The infinitesimal generator of V (x, t) along (7)

satisfies

LV (x, t) = − c1e
T
1 e1e

T
1 e1 + eT

1 e1e
T
1 e2 + eT

2 e2e
T
2 ΛR(Θ)M−1

1 B∗(θ)u(t)

− c2
1e

T
2 e2e

T
2 e1 + c1e

T
2 e2e

T
2 e2 − eT

2 e2e
T
2 Ẍdm

+ Tr
{
ΣT NT M−1

1 RT (Θ)ΛT
(
2e2e

T
2 + eT

2 e2I
)
ΛR(Θ)M−1

1 NΣ
}/

2

+ ãT H−1 ˙̂a
/
γ

(9)

We analyze the terms on the right-hand side of (9). Using Young’s inequality, we have

eT
1 e1e

T
1 e2 ≤ c1

(
eT
1 e1

)2 /
4 + 27

(
eT
2 e2

)2 / (
4c3

1

)
(10)

Furthermore, according to the definition of the Frobenius norm, the norm compatibility,
(4), and Young’s inequality, we have

Tr
{
ΣT NT (θ)M−1

1 RT (Θ)ΛT
(
2e2e

T
2 + eT

2 e2I
)
ΛR(Θ)M−1

1 N(θ)Σ
}/

2

≤ 3
(
eT
2 e2

)
∥Λ∥2

F ∥R(Θ)∥2
F

∥∥M−1
1

∥∥2

F
∥N(θ)∥2

F ∥Σ∥2
F

/
2

≤ 3
(
eT
2 e2

)
∥Λ∥2

F ∥R(Θ)∥2
F

∥∥M−1
1

∥∥2

F

[
2θ̇4(M + m)2 + 2(M + m)2 + 1

]
∥Σ∥2

F

/
2

≤ 3h
(
eT
2 e2

) /
2 ≤ 9ε2

(
eT
2 e2

)2 /
4 + h2

/ (
2ε2

)
(11)



ICIC EXPRESS LETTERS, PART B: APPLICATIONS, VOL.8, NO.1, 2017 31

where ε > 0 is a design parameter. Now, the control input u(t) is designed as

u(t) =
⌢

B
∗
(θ)M1R

−1(Θ)Λ̂−1ū(t) (12)

where
⌢

B
∗
(θ) = B∗T

(θ)
(
B∗(θ)B∗T

(θ)
)−1

is a pseudo inverse of B∗(θ). Substituting (10)-

(12) into (9), we have

LV (x, t) ≤ − c1

(
eT
1 e1

)2
+ c1

(
eT
1 e1

)2 /
4 + 27eT

2 e2e
T
2 e2

/ (
4c3

1

)
+ eT

2 e2e
T
2 ū(t)

− c2
1e

T
2 e2e

T
2 e1 + c1e

T
2 e2e

T
2 e2 − eT

2 e2e
T
2 Ẍd + 9ε2

(
eT
2 e2

)2 /
4

+ h2
/ (

2ε2
)
− ãT ū(t)eT

2 e2e
T
2 â + ãT H−1 ˙̂a

/
γ

(13)

We design the adaptive laws as follows

˙̂a = γHū(t)eT
2 e2e

T
2 â (14)

where ū(t) = c2
1e1 − c1e2 + Ẍd − 27e2/ (4c3

1)− 9ε2e2/4− 3c2e2/4, and c2 > 0 is a constant.
The following inequality is obtained:

LV (x, t) ≤ −cV (x, t) + d (15)

where c = min(3c1, 3c2, 2/γ), d = h2/(2ε2).

4. Stability Analysis.

Theorem 4.1. For the stochastic model of the ODW with a monocular camera (3), the
adaptive controller (12) is designed such that the error system (7) has a unique strong
solution on [t0,∞), and e1 and ė1 are exponentially practically stable in the mean square
for initial values e1(t0) ∈ Rn and e2(t0) ∈ Rn. The tracking errors e1 and ė1 satisfy

lim
t→∞

E |e1| ≤ (4d/c)1/4 (16)

lim
t→∞

E |ė1| ≤ 2
(
1 + c2

1

)
(4d/c)1/4 (17)

Moreover, the right-hand sides of (16) and (17) can be made arbitrarily small by choos-
ing the appropriate design parameters.

Proof: From the physical significance of the inertia matrix M1, which is symmetric
and positive definite, the inverse matrix M−1

1 exists and is smooth, as it does for the func-
tions u(t), B∗(θ), and R(Θ). Therefore, the error system (7) satisfies the local Lipschitz
condition. From (8) and (15), according to Lemma 1 in [7], a unique strong solution to
the error system (7) on [t0,∞) exists for initial values e1(t0) ∈ Rn and e2(t0) ∈ Rn, and
the error system (7) is exponentially practically stable in mean square.

Moreover, by multiplying the inequality (15) by ect > 0 and integrating it from t0 to t,
we have

E
(
ectV (x, t)

)
≤ ect0V (x0, t0) + E

∫ t

t0

ecsd·ds ∀t ≥ t0 (18)

From (8), we can deduce that

E |e1|2 ≤ 2ec(t0−t)/2
( (

eT
1 (t0)e1(t0)

)2 /
4 +

(
eT
2 (t0)e2(t0)

)2 /
4

+ ãT (t0)H
−1ã(t0)/(2γ)

)1/2

+ (4d/c)1/2
(19)

E |e2|2 ≤ 2ec(t0−t)/2
( (

eT
1 (t0)e1(t0)

)2 /
4 +

(
eT
2 (t0)e2(t0)

)2 /
4

+ ãT (t0)H
−1ã(t0)/(2γ)

)1/2

+ (4d/c)1/2
(20)

Using (19) and (20), and in view of |ė1|2 = (|e2| + c1 |e1|)2 ≤ 2 (1 + c2
1)

(
|e2|2 + |e1|2

)
,

it follows that (16) and (17) hold. Therefore, the right-hand side of (16) and (17) can
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be made small enough by appropriate choice of c1, c2, γ, ε, and H, because they are
independent.

5. Simulation Results. In this section, the proposed adaptive tracking control algo-
rithm is verified by a simulation of the ODW with center of gravity shifts and unknown
visual servo parameters. To rigorously verify the tracking performance of the proposed
method, we assume that the walker follows an elliptical path and that the random param-
eters caused by the center of gravity shift are r0 = 0.16(1 + sin t) m, λ1 = L − r0 sin t m,
λ2 = L+ r0 cos t m, λ3 = L+ r0 sin t m, and λ4 = L− r0 cos t m. The physical parameters
of the ODW used in the simulation are M = 58 kg, m = 80 kg, L = 0.4 m, I0 = 27.7
kg·m2, and Θ = π/4 rad. The design parameters are c1 = 2.08, c2 = 0.0001, ε = 1.4,
γ = 470000, and H = diag{230, 4000, 75}. Initial values are chosen as α̂1(0) = 0.012,
α̂2(0) = 0.015, xm(0) = 0.1414, ym(0) = 0.1414, θm(0) = π/4, x(0) = 20, y(0) = 0, and
θ(0) = π/4. The trajectory Xdm is described by xdm = 20 cos(0.1t), ydm = 10 sin(0.1t),
θdm = π/4.

The simulation results are given in the following figures.

(a) X-position (b) Y-position (c) Orientation angle (d) Path tracking

Figure 4. Tracking performance of the camera space

Figure 5. Adaptive laws

Figure 6. Mean square errors
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(a) X-position (b) Y-position (c) Orientation angle (d) Path tracking

Figure 7. Tracking performance of the task space

Figures 4(a)-4(d) plot the tracking performance of the ODW for the X-position, the Y-
position, the orientation angle, and the path tracking of the ellipse in the camera space,
respectively. We can see that the closed-loop system can realize exponentially mean
square stability and that the ODW can realize trajectory tracking with the adaptive
controller (12). The adaptive laws are shown in Figure 5. Figure 6 shows that the
mean square of the errors can be made arbitrarily small by choosing the appropriate
design parameters. Figures 7(a)-7(d) give the tracking performance in the task space,
respectively. The simulation results above show that the controller designed in the camera
space can simultaneously complete the trajectory tracking in the camera space and the
task space.

6. Conclusions. In this paper, we propose an effective scheme to address the center of
gravity shift and unknown visual parameters of an ODW. To accomplish this, we first
construct a reasonable stochastic model to describe the motion of an ODW subject to the
uncertainty of random parameters in a monocular camera system. Then, we design an
adaptive tracking controller to achieve the trajectory tracking of ODW with the center
of gravity shift and unknown visual parameters. The stability of the system is analyzed
and established by using a Lyapunov approach of the probability space. Finally, we
demonstrate the effectiveness of our proposed controllers with simulation studies.

There are other problems under current investigation such as tracking control with
incomplete measurements, bounded control force aiming to control the ODW’s trajectory,
and their application to other mechanical systems.
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