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Abstract. Recently, dimension reduction algorithms are widely applied to high-dimensi-
onal data preprocessing, especially for face images. In this paper, a novel unsupervised
dimension reduction algorithm, named clustering-based discriminative sparsity preserving
projections (CDSPP), is proposed by integrating cluster analysis and sparse representa-
tion analysis into a joint framework. Unlike many existing approaches such as sparsity
preserving projections (SPP), where the constructive weights are computed by the classi-
cal sparse representation (SR), CDSPP introduces some class discriminant information
by using clustering firstly, and CDSPP uses margin maximization criterion (MMC) to
apply the discriminative information in the learning model. The obtained projections will
contain more discriminant information than classical sparse subspace learning methods
SPP. Moreover, CDSPP is an unsupervised dimensionality reduction method, which im-
proves the simplicity of model training. Experiments on AR and Yale-B image datasets
demonstrate its effectiveness.
Keywords: Dimensionality reduction, Clustering-based discriminative sparse represen-
tation, Sparse subspace learning, Face recognition

1. Introduction. The dimensionality of variables or feature is usually very high in many
real world application domains, such as face recognition, signal processing, and text cat-
egorization. These high-dimensional features may bring some disadvantages, such as
over-fitting, low efficiency and poor performance. To mitigate the so-called “curse of di-
mensionality” [1] and to improve the computational efficiency, dimensionality reduction
(DR) is an effective approach to preprocessing such data. So far, a variety of dimensional-
ity reduction methods for projecting the high-dimensional data from their original space
into low-dimensional feature spaces have been proposed and studied for machine learn-
ing applications. These traditional methods can be categorized as supervised algorithms,
semi-supervised algorithms and unsupervised algorithms, based on whether the sample
labels are considered for dimensionality reduction [2]. Supervised approaches use the dis-
criminative information encoded in the labels to learn a more discriminative subspace.
Some supervised sparsity-based approaches have been studied [3, 4, 5] to improve the dis-
crimination ability of learning models. However, the label information is hard to obtain
and a data set usually has small labeled data and large unlabeled data. So the so-called
“small labeled sample problem” [6] is usually a challenge for supervised algorithms. Due
to the small labeled data, semi-supervised algorithms [7, 8, 9] are developed to exploit
both the labeled and unlabeled data simultaneously. In many real world applications,
data is usually high-dimensional and with no label. Therefore, it is quite necessary and
promising to develop unsupervised dimensionality reduction algorithms [10]. So in this
paper, we only focus on unsupervised methods, due to its effectiveness and feasibility.

In the unsupervised DRs, principle component analysis (PCA) [11] seems to be the most
popular one. It aims to keep the variance of data as much as possible, and the reduced
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dimensions are linear combinations of original features. Besides, enormous manifold-
based methods, which are based on the idea that data are usually samples from a low-
dimensional manifold that is embedded in a high-dimensional space, such as local linear
embedding (LLE) [12] and Laplacian eigenmaps (LE) [13] have been developed to explic-
itly discover the nonlinear manifold structure concealed in the data. In LLE and LE, it
is assumed that each data point can be linearly reconstructed by its nearest neighbors,
and in a low-dimensional space, its representation should also be linearly reconstructed
by the representations of its nearest neighbors with the same reconstruction coefficients.
However, they have the out of sample problem [14]. Thus locality preserving projec-
tions (LPP) [15] and neighborhood preserving embedding (NPE) [16] were proposed to
solve this problem. In fact, LPP and NPE can be seen as linear models of LE and LLE
respectively.

Recently, some new approaches integrating the theory of sparse representation have
been proposed and have been successfully applied in many real world applications. Sparse
subspace learning (SSL) [17] is a special kind of dimensionality reduction methods which
considers “sparsity”. It finds a subspace spanned by sparse base vectors and the sparsity is
embedded on the projection vectors. Qiao et al. [18] firstly presented a sparsity preserving
projection (SPP), which aims to preserve the sparse reconstructive relationship of the
data by minimizing an L1-objective function. All these algorithms are designed based on
classical SR. However, the classical unsupervised SR is a global linear method which tends
to lose the local information of data. It has been shown that locality is more essential than
sparsity in some case [19]. Thus in order to solve the problem in classical unsupervised
SR, Li et al. [20] proposed a clustering-guided sparse structural learning for unsupervised
feature selection (CGSSL) by integrating cluster analysis and sparse structural analysis
into a joint framework.

Motivated by the recent development of SR, we propose a novel unsupervised dimen-
sionality reduction algorithm, namely clustering-based discriminative sparsity preserving
projections (CDSPP), which integrates cluster analysis and sparse representation analysis
into a joint framework. CDSPP uses a model in which the cluster centers are character-
ized by a higher density than their neighbors and by a relatively large distance from
points with higher densities to cluster each point of the training data and divides the
date into several clusters firstly. Then margin maximization criterion (MMC) is used to
encode discriminant label information. Finally a classical sparse representation (SR) is
used. Compared to SPP, the coefficients computed by CDSPP are more discriminative
and take more local structure of data into account. Extensive experiments are conducted
on human face images. The experimental results show that the proposed algorithm is
superior to several relative algorithms.

The rest of the paper is organized as follows. In Section 2, we review the related
work of SPP and give out the overview of our proposed method. Experimental results
and comparisons on two real-world datasets are demonstrated in Section 3. Finally, the
conclusion is given in Section 4.

2. Clustering-Based Discriminative Sparsity Preserving Projections.

2.1. Sparsity preserving projections (SPP). Sparse representation (SR) has been
successfully applied to solve several real world problems such as pattern recognition and
machine learning. SR aims to represent each data point xi using as few entries of X as
possible. SPP first computes a sparse reconstructive weight vector si for each data point
xi by solving the following minimization problem [18]:

ŝi = arg min
||si||=1

||si||1, s.t. xi = X̃si (1)
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where si = [si1, . . . , si,i−1, 0, si,i+1, . . . , sin]T . In fact, X̃ is a subset of all the given data X
which does not include xi, so the ith element of si should be zero. Then we construct the
sparse reconstructive weight matrix S = [s1, s2, . . . , sn].

A reasonable criterion for seeking a “good” projection β which best preserves the op-
timal weight vector ŝi is to minimize the following cost function [18]:

β̂ = arg min
β

n∑
i=1

∣∣∣∣βTxi − βTXŝi

∣∣∣∣2 = arg min
β

βTX(I − S)T (I − S)XT β (2)

Then the optimization problem of (2) can be solved by calculating the generalized
eigenvectors of the following generalized eigenvector problem:

X(I − S)T (I − S)XT β = λXXT β (3)

2.2. Margin maximization criterion (MMC). Margin maximization criterion (M-
MC) [21] is an existing dimensionality reduction algorithm. Its main idea is to maximize
the margin between classes. We can derive linear discriminant analysis (LDA) from MMC
by adding some suitable constraints. And MMC overcomes the drawback of small sample
size problem that LDA has.

The objective function of MMC can be written as follows

J =
1

2

c∑
i=1

c∑
j=1

[pipj(d(mi − mj) − s(mi) − s(mj))] (4)

where c is the number of classes, pi and pj are the prior probability of class i and class
j, and mi and mj are the mean vectors of class i and class j. d(mi − mj), s(mi), and
s(mj) are defined as the following respectively.

d(mi − mj) = ||mi − mj||, s(mi) = tr(Ci), s(mj) = tr(Cj) (5)

where Ci is the covariance matrix of class i.
It is easy to show that optimization (5) can be reformulated as

J = tr(Sb − Sw) (6)

where

Sb =
c∑

i=1

pi

(
mi −

c∑
j=1

pjmj

)(
mi −

c∑
j=1

pjmj

)T

(7)

is called the between-class scatter matrix and

Sw =
c∑

i=1

piCi (8)

is called the within-class scatter matrix.

2.3. The CDSPP algorithm. SPP is effective in many domains, but it is unsupervised
and its unsupervised nature restricts its discriminating capability. Even though some
discriminative SPP [3, 4, 5] approaches are proposed to improve the discriminant property
of SPP, they are easy to get into the trouble of “small labeled sample problem”. Motivated
by this reason, we propose a novel approach called CDSPP which is unsupervised and
discriminative.

We use the classical sparse representation as introduced in Section 2.1.

ŝi = arg min
||si||=1

||si||1, s.t. xi = X̃si (9)

And its optimized function can be derived into the following

J1 = min
β

n∑
i=1

∣∣∣∣βTxi − βTXŝi

∣∣∣∣2 = min
β

βTX(I − S)T (I − S)XT β (10)
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Furthermore, the main idea of linear transformation is to find a mapping β to project
a new pattern further from patterns in different classes but closer to those in the same
class, which is exactly the goal of classification. That is to say, MMC is a good criterion
being used in classification problems. However, MMC is a supervised algorithm and label
information is used in the algorithm. So we should obtain the discriminative information
of unlabeled data. We firstly use clustering algorithm to divide data into several parts.

For each data point xi, we compute two variables: its local density ρi and its distance
σi from points of higher density [22]. Both the variables are computed depending only on
the distance dij between data points. The local density ρi is defined as

ρi =
n∑

j=1

φ(dij − dc) (11)

where φ is a function. φ(dij − dc) equals 1 when dij − dc < 0 and 0 otherwise and dc is
a cutoff distance. ρi is equivalent to the number of points within a circle, the center and
radius of which are xi and dc respectively. Besides, σi is defined as follows

σi = min dij, j : ρj > ρi (12)

σi is a relative distance which is the smallest value of distances between xi and other
with higher density points. For the point with highest density, we define σi = max dij.
Obviously, the clusters are those which have high density and are far from other clusters.
If xi has a big σi and small ρi, xi is a noise point probably. What is more, if xi has a
big ρi and small σi, xi is very likely a point besides cluster. So we define the following
clustering criterion:

εi = ρiσi (13)

We sort ε in descending order, and select those points corresponding to largest values
as the cluster centers. Then for each given data xi, we classify it to the cluster which xi

is closest to. Finally, all given data are clustered into c parts.
Then we use MMC to make the distance between clusters as large as possible while the

distance within a cluster as small as possible. When performing dimensionality reduction,
we want to find a mapping from the original data to some feature subspace in which
J is maximized after the transformation. We suppose there is a linear transformation
Y = βTX that maximizes J , and an optimal subspace will be derived as follows

J2 = max
β

tr
[
βT (Sb − Sw)β

]
(14)

Obviously, if the transformation J1 obtained by SPP can solve J2 simultaneously, the
discriminative information will be imposed greatly. Thus the solution of CDSPP can be
derived into the following optimization problem:

β̂ = arg min
βT XXT β=1

tr
{
βT
[
X(I − S)T (I − S)XT − µ(Sb − Sw)

]
β
}

(15)

where µ is a parameter to balance the sparsity and the discriminative information.
Then the optimal β̂ of Formula (16) is given by the minimum eigenvalue solution to

the following generalized eigenvector problem:[
X(I − S)T (I − S)XT − µ(Sb − Sw)

]
β = λXXT β (16)

Thus, the projection can be written as follows

Y = β̂TX (17)
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3. Experiment. In this section, we have conducted two experiments on the popular face
databases AR and Yale-B to verify the effectiveness of the proposed CDSPP method. We
compare CDSPP with several typical dimensionality reduction methods such as PCA,
LPP, NPE and SPP. A 1-NN classifier is employed to classify the projected feature space.
To robustly evaluate the performance of different algorithms under different sample condi-
tion, we use 5-fold cross validation and all the experiments are implemented on MATLAB
platform. All images in Yale-B are resized to 32×32 pixels, and images in AR are resized
to 60× 43. We adopt the implementation in SPAMS package to solve Formula (9) and dc

was set to satisfy the average number of ρ is around 0.02 of the total number of points in
the dataset. We set 1 to µ in CDSPP empirically.

3.1. The AR face image database. The AR database consists of over 4000 frontal
face images of 126 individuals with different facial expressions, occlusions and lighting
conditions. Figure 1 gives some samples of this dataset. We chose a subset of the dataset
consisting of 50 female and 50 male subjects.

Table 1 shows the recognition rates and their corresponding standard deviations of
each method under ten different dimensions when using 1-NN classifier. The rank of each
method is shown on the right of the recognition rate. The best algorithm ranks one, and
the worst ranks five. If both algorithms perform the same, average ranks are assigned [23].
An average rank is computed for each algorithm. We also perform t-test on the compared
methods, and the results are shown in Table 2. Each column shows p-values of t-test on
CDSPP and other methods under different feature dimensionality. The p-values indicate
the probability that two sample sets are distributed with equal means. The smaller the
value is, the bigger difference the two algorithms have, and 0.05 is a threshold.

Figure 1. Sample face images from AR database

Table 1. Recognition rate on AR database under different dimensionalities

20 40 60 80 100 120

PCA 65.73±2.53 2 73.79±2.48 3 75.64±1.07 3 76.93±0.99 3 77.80±1.35 3 78.23±1.54 3

LPP 65.73±1.27 5 18.72±2.51 5 27.43±1.54 5 30.93±1.58 5 36.21±1.66 5 39.71±0.69 5

NPE 11.31±4.19 4 23.60±3.62 4 31.00±3.98 4 36.51±4.30 4 39.79±4.24 4 44.65±2.21 4

SPP 64.86±1.13 3 75.16±3.31 2 77.31±3.36 2 78.95±2.97 2 80.16±2.16 2 80.57±2.75 2

CDSPP 71.36±2.86 1 87.13±1.92 1 91.63±1.20 1 92.63±1.10 1 91.99±1.33 1 92.35±1.27 1

140 160 180 200 Score

PCA 78.44±1.56 3 78.51±1.29 3 78.72±1.36 3 78.65±1.55 3 2.9

LPP 40.64±0.62 5 42.93±1.68 5 44.36±0.38 5 43.65±1.17 5 5

NPE 45.86±1.96 4 47.28±3.31 4 48.71±3.87 4 48.43±3.48 4 4

SPP 80.56±2.81 2 80.29±2.63 2 80.67±5.89 2 80.97±4.93 2 2.1

CDSPP 92.86±0.40 1 92.92±0.94 1 92.49±1.18 1 91.49±1.51 1 1

Table 2. P-values of t-test on AR database under different dimensionalities

20 40 60 80 100 120 140 160 180 200

CDSPP/PCA 0.0136 0.0006 2.7E-06 4.1E-05 0.0001 0.0001 0.0001 0.0001 0.0003 0.0008

CDSPP/LPP 7.8E-07 3.6E-06 1.0E-06 9.6E-07 4.8E-07 7.5E-08 4.3E-09 1.5E-06 2.0E-07 8.4E-07

CDSPP/NPE 0.0001 1.4E-05 1.3E-05 2.0E-05 4.2E-05 5.7E-06 1.5E-06 1.4E-05 1.6E-05 8.1E-06

CDSPP/SPP 0.0165 0.0079 0.0028 0.0021 0.0018 0.0006 0.0008 0.0010 0.0092 0.0036
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The results of Table 1 demonstrate that, CDSPP outperforms all other methods under
all dimensions on recognition rate. Table 2 shows that, the differences between CDSPP
and PCA, LPP, NPE and SPP are obvious under almost all dimensions. That is to say,
CDSPP is distinctly superior to other methods in all dimensions.

3.2. The Yale-B face image database. The Yale-B database consists of 2414 frontal
face images of 38 individuals under various lighting conditions. Figure 2 gives some samples
of this dataset.

The recognition rates of five different methods under ten different dimensions, the
corresponding dimensionality and the standard deviations of 5-fold cross validation are
shown in Table 3. We also compute an averaged rank for each algorithm to evaluate their
performance. The best results are highlighted in bold face. In addition, Table 4 shows the
p-values of t-test of CDSPP compared with the other four methods by ten dimensions.
Those values under threshold are highlighted in bold face, which show that CDSPP is
significantly different from the others.

Table 3 shows that CDSPP obtains the best averaged rank and it indicates that CDSPP
achieves the best recognition rates of all five different methods. When the dimension is 20
and 40, CDSPP loses to SPP or NPE according to the recognition rate, but the p-values
shown in Table 4 indicate that both algorithms have no obvious difference. Based on the
recognition rates shown in Table 3 and the p-values shown in Table 4, we can draw such
a conclusion that CDSPP outperforms SPP when the dimension is equal or larger than
60, and there is no significant difference between CDSPP and SPP when dimension is less
than 60.

Based on the results on AR and Yale-B, we may draw such a conclusion that CDSPP
achieves a good performance on face recognition. CDSPP uses distance to divide data

Figure 2. Sample face images from Yale-B database

Table 3. Recognition rate on Yale-B database under different dimensionalities

20 40 60 80 100 120

PCA 37.87±1.40 4 53.31±0.51 4 61.18±0.42 4 64.99±1.17 4 68.39±1.27 4 69.80±1.2 4

LPP 32.27±0.96 5 45.16±0.93 5 54.35±0.87 5 60.52±0.59 5 64.95±2.02 5 66.86±2.01 5

NPE 68.89±0.50 1 77.22±1.10 3 79.91±1.03 3 80.91±0.86 3 81.73±0.47 3 82.65±0.97 3

SPP 68.23±1.15 3 83.02±0.69 1 85.80±1.37 2 87.37±1.42 2 88.12±1.35 2 88.24±1.02 2

CDSPP 68.27±1.33 2 82.98±0.76 2 86.04±1.05 1 88.08±1.37 1 89.32±0.81 1 89.94±0.99 1

140 160 180 200 Score

PCA 70.92±1.16 4 71.79±0.98 4 72.45±1.23 4 72.83±1.03 4 4

LPP 69.72±2.00 5 71.05±1.87 5 71.96±1.62 5 72.75±1.80 5 5

NPE 83.10±0.98 3 83.47±0.97 3 83.27±1.14 3 83.85±1.24 3 2.8

SPP 88.65±0.78 2 89.36±0.86 2 89.94±0.87 2 89.36±0.65 2 2

CDSPP 90.52±1.14 1 90.56±1.23 1 90.68±1.23 1 90.31±0.99 1 1.2

Table 4. P-values of t-test on Yale-B database under different dimensionalities

20 40 60 80 100 120 140 160 180 200

CDSPP/PCA 1.3E-05 1.9E-07 3.1E-06 4.0E-05 2.1E-05 3.3E-05 4.0E-05 3.7E-05 0.0001 4.6E-05

CDSPP/LPP 2.5E-06 3.5E-07 5.6E-07 1.1E-06 3.3E-05 6.1E-06 4.2E-06 1.4E-05 3.6E-06 2.7E-06

CDSPP/NPE 0.4293 2.4E-05 0.0001 1.2E-05 7.4E-06 0.0001 0.0001 1.7E-05 1.1E-05 3.4E-06

CDSPP/SPP 0.8484 0.7091 0.3271 0.0716 0.0179 0.0002 0.0123 0.0142 0.2904 0.0112
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into several parts and puts this discriminative information into MMC, which improves the
discriminative ability of our algorithm. So it outperforms SPP on data that local structure
is essential for discrimination.

4. Conclusion. In this paper, we proposed a clustering-based discriminative sparsity
preserving projections (CDSPP). The CDSPP algorithm firstly solves a clustering prob-
lem, and then combines SPP and MMC methods. Experiments on AR and Yale-B data-
base show the effectiveness of our method. However, the proposed approach still has room
for improvement. For instance, other proposed clustering methods with a reduced time
complexity could be introduced to improve the computational efficiency. In a principled
manner, it remains an important direction for future work.
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