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Abstract. Due to the rapid development of satellite sensor technology, a rich aerial
image data set can be easily acquired. How to efficiently classify and recognize the aerial
image has become a critical task. In this paper, we propose an aerial image classification
method based on local variance similarity sparse coding (LVSSC) and deep belief net-
work (DBN). Low-level features are extracted by using scale-invariant feature transform
(SIFT). These extracted features are encoded in terms of an improved sparse encoding
mode by combining local variance similarity and sparse coding to generate new sparse
representation. DBN is used to express the relationship between low-level features and
high-level semantic representations and complete image classification. We apply our
method to OT data set and UC Merced data set. Experimental results show that our
method efficiently utilizes spatial information of images and improves the classification
performance.
Keywords: Aerial image classification, Local variance similarity, Sparse coding, Deep
belief network, Feature extraction

1. Introduction. At present, the research on high resolution aerial image classification
has been rapidly developed. Bruzzone and Carlin proposed an algorithm based on pixel
level feature for scene classification [1]. However, the classification results are greatly
influenced by the segmentation algorithm. Yang and Newsam have computed the co-
occurrence of the visual words and combined this with the bag-of-visual-words (BoVW)
method, and they reported higher classification accuracy than the traditional BoVW and
the spatial pyramid matching kernel (SPMK) for their extended spatial co-occurrence ker-
nel (SPCK++) method [2]. However, due to the aerial image character of high resolution
and large data, we need to find a better classification method.

With the development of the sparse coding (SC) [3], the image representation method
has changed greatly. Sparse coding simulates the activity of the neuron’s sparse type. Lee
et al. proposed an unsupervised learning model with 9 layers of sparse coding, which can
effectively detect face from unlabeled images [4]. In this paper, we propose a novel sparse
coding method by combining local variance similarity (LVS) and sparse coding to encode
aerial image features [5].

In recent years, deep learning has been widely used in various fields of machine vision.
Deep learning network has a hierarchical structure, which can effectively learn the features
from a large number of input data. Lu et al. proposed a remote sensing image classification
method based on DBN model [6] which can outperform support vector machine (SVM)
and traditional neural network (NN) [7]. This paper takes DBN as an important tool for
aerial image classification.

According to several characteristics of aerial images, this paper also proposes a classi-
fication method of aerial image based on sparse representation and deep belief network.
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The algorithm flow chart is shown in Figure 1. First, we use SIFT features as aerial im-
age feature descriptor for feature extraction and then the improved sparse representation
of the extracted features is exploited to generate new sparse representation. Finally we
put sparse feature into DBN which is used to express the relationship between low-level
features and high-level semantic representations and complete image classification. We
apply our model to OT data set and UC Merced data set and compare it with BoVW
[2], SPMK [8] and SC+SVM [9]. Our method obtained results that were equal to or even
better than the previous results with the OT data set and the UC Merced data set.

The rest of the paper is organized as follows. In Section 2, we briefly introduce the
SIFT feature extraction method and describe the unsupervised spatial feature encoding
approach in detail. Section 3 describes the DBN model and the specific classification
method on aerial images. The details of our experiments and the results are presented in
Section 4. Finally, Section 5 concludes this paper and our ideas for future work.

Figure 1. Framework of the proposed aerial image classification

2. Low-Level Feature Extraction.

2.1. SIFT feature extraction. SIFT is the most widely used feature in the field of
computer vision and also recognized as one of the best features. The feature extraction
steps include feature detection and feature descriptor generation.

In the feature point detection: DOG equation is usually used to determine feature point
detection, as shown in Formula (1):

D(x, y, δ) = (G(x, y, kδ) − G(x, y, δ)) · I(x, y) = L(x, y, kδ) − L(x, y, δ) (1)

where k is a constant, G(x, y, δ) = 1
2πδ2 e

−(x2+y2)/2δ2
.

In the feature descriptor generation: first, determine the rectangular area of R∗R with
each feature point as the center and calculate the gradient of each pixel. Then divide the
region into N ∗N sub regions and calculate the gradient of each feature point of the aerial
image and form statistics of histogram. At this stage, the input image is represented as
set of low-level feature vectors X = [x1, x2, . . . , xn], where n is the number of samples.
We set n = 10000 for all the experiments described in the later section.

2.2. Sparse representation. Sparse representation is to represent images with a mini-
mum of coefficients, which can provide a simple representation of redundant information
and is propitious to extract the most essential feature of the image for DBN.

In this stage, we plan to find a set of basis functions and sparse weights that can be
used to reproduce the original feature matrix X with least reconstruction error.

To construct a basis function (dictionary), first, we randomly sample low-level features
from the entire data set to generate matrix X = [x1, x2, . . . , xn]. Next, given the feature
matrix X, we learn the basis functions by finding best solution for a minimization problem
which is similar to the sparse coding framework. The basis function D is learned using
alternate minimization of Formula (2):

min
D,si

∑
i

∥Dsi − xi∥2
2, subject to ∥Dj∥2 = 1, ∀j and ∥si∥0 ≤ k, ∀i (2)
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where ∥si∥0 is the number of nonzero elements in column vector si.
After learning the basis function D, we are going to represent the feature matrix X

sparsely. According to sparse coding theory, the feature matrix X can be represented
as a sparse linear combination of atoms in D. The process of feature encoding can be
expressed as the following optimization problem:

fi =
∑

i

(xi − Dsi)
2 + λ

∑
i

θ(si) (3)

where θ(si) is sparse penalty function. However, the formula uses error square sum as the
standard for evaluating the similarity between sparse features and input features, which
ignores the strong correlation between image features and the importance of structure
and details for image. To get better sparse feature, we introduce the concept of LVS.

In recent years, people have a new breakthrough in the study of human eye vision
system. The human eye is more sensitive to the high frequency part of the image which
is related to the details of the image. The local variance of the image well reflects the
spatial details of the image, so that the details of the image can be analyzed through the
variation of the local variance of the image [10]. We can also consider that the distribution
of the local variance of the image contains a large amount of structural information of
the image [11]. The LVS between reconstruction feature Y and original feature X can be
defined as Formula (4):

LV S =
2µxµy

µ2
x + µ2

y

· 2σxσy

σ2
x + σ2

y

(4)

where µx and µy are the mean value, σx and σy are the standard deviation.
For the convenience of description, we divide the original image blocks into n dimen-

sional column vector I. Ii (i = 1, . . . , N) represents each pixel point. ϕk is each of the N
vectors. ϕi,j is the element in basis function matrix A. The reconstructed image block is
represented by Yi (i = 1, . . . , N).

Combining LVS and sparse coding, we can get the new optimization criterion:

zi = λ1

N∑
i=1

(Ii − Yi)
2 + λ2(1 − LV S(I, Y )) + λ3

M∑
i=1

θ(si) (5)

where λ1, λ2 and λ3 are weight coefficients.
Combining Formulas (4) and (5), we can get:

zi = λ1

N∑
i=1

(Ii − Yi)
2 + λ2

(
1 − 2µIµY

µ2
I + µ2

Y

· 2σIσY

σ2
I + σ2

Y

)
+ λ3

M∑
i=1

θ(si) (6)

We use alternative optimization method to solve Formula (6), which is to solve one
variable by fixing another variable. We define

Q1 =
N∑

i=1

(Ii − Yi)
2, Q21 = 2µIµY , Q22 = 2σIσY (7)

Q23 = µ2
I + µ2

Y , Q24 = σ2
I + σ2

Y , Q3 =
M∑
i=1

θ(si) (8)

Step 1. Fixing A, use conjugate gradient method to solve S.

∇αi
zi = λ1∇αi

Q1 − λ2
Q21 · Q22

Q23 · Q24

·
(
∇αi

Q21

Q21

+
∇αi

Q22

Q22

− ∇αi
Q23

Q23

− ∇αi
Q24

Q24

)
+ λ3∇αi

Q3

(9)
where

∇αi
Q1 = −2

N∑
k=1

(Ik − Yk) ϕk,i, ∇αi
Q21 = 2

N
µI

N∑
k=1

ϕk,i, ∇αi
Q22 = 2

N−1

N∑
k=1

((Ik − µI)ϕk,i)

(10)
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∇αi
Q23 =

2

N
µY

N∑
k=1

ϕk,i, ∇αi
Q24 =

2

N − 1

N∑
k=1

((Yk − µY )ϕk,i) (11)

Step 2. Fixing S, use simple gradient method to solve A.

∇ϕi,j
zi = λ1∇ϕi,j

Q1 − λ2
Q21 · Q22

Q23 · Q24

·
(∇ϕi,j

Q21

Q21

+
∇ϕi,j

Q22

Q22

−
∇ϕi,j

Q23

Q23

−
∇ϕi,j

Q24

Q24

)
(12)

where

∇ϕi,j
Q1 = −2 (Ii − Yi) αj, ∇ϕi,j

Q21 =
2

N
µIαj (13)

∇ϕi,j
Q22 =

2

N − 1
(Ik − µI) αj, ∇ϕi,j

Q23 =
2

N
µY αj, ∇ϕi,j

Q24 =
2

N − 1
(Yi − µY )αj (14)

After sparse representation, the new feature representation for an image scene will
usually have a very high dimensionality. For computational efficiency and storage volume,
it is a standard practice to use a pooling strategy to reduce the dimensionality of the image
representation. With the sparse features zi computed for an image patch, we can estimate
the final feature representation as follows:

m =
1

N

N∑
i=1

zi (15)

At this point, we get the sparse feature representation of aerial image m. m is used as
the input vector of DBN to complete the high-level image classification.

3. High-Level Image Classification. Deep learning network has a hierarchical struc-
ture, which can automatically learn high-level features from low-level features. This pa-
per uses deep belief networks to represent the relationship between low-level features and
high-level semantic representations of aerial image and then complete image classification.

In 2006, Hinton et al proposed a model of DBN and successfully applied it to the
recognition of handwritten font [12]. The basic structure of DBN is restricted boltzmann
machine (RBM), as shown in Figure 2.

v1

W

visible

layer

hidden

layer

v2

h2h1

vnv3

hn

Figure 2. RBM model

RBM is a type of two layer neural networks comprised of a visible layer that represents
the observed data and a hidden layer that represents the hidden variables. Connections
only exist between the visible layer and the hidden layer.

RBM is an energy based model, and its energy function is defined in Formula (16):

E(v, h) = −
I∑

i=1

J∑
j=1

vihjwij −
I∑

i=1

aivi −
J∑

j=1

bjhj (16)

where w is weight matrix, b are visible unit biases and a are hidden unit biases.
Based on the energy function, the definition of the joint distribution is in Formula (17):

P (v, h) =
exp(−E(v, h))

Z
(17)

where Z is called the partition function and Z =
∑
v

∑
h

exp(−E(v, h)).
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Conditional probability distributions are as follows:

p(hj = 1 |v ) = δ

(
bj +

I∑
i=1

viwji

)
, p(vi = 1 |h) = δ

(
ai +

J∑
j=1

hjwji

)
(18)

where δ(x) is sigmoid function.
Each two hidden layers constitute an RBM network and the top layer is back propaga-

tion (BP) neural network, as shown in Figure 3.
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Figure 3. DBN structure

The lower layer of RBM extracts and abstracts the input data and puts it as the high
layer input. The DBN is trained by the combination of pre-training and fine tuning.
First, the unsupervised training of each layer of RBM is carried out in a bottom-up way
and then the supervised BP neural network is used to fine tuning the whole model in a
top-down way.

After training DBN, we put the sparse feature of the image m as input and the category
of the image as output to train a new network structure, which is suitable to classify aerial
images.

4. Experiment.

4.1. Experimental setup. This paper uses dense-SIFT algorithm [13]. First, divide the
image into image blocks with the size of 16 × 16 pixels and interval of 8 pixels. Then
divide the image block into 4 × 4 sub regions and calculate the gradient histogram of 8
directions in each sub region as the seed point. Finally, the seed points are connected to
the 128 dimensional feature vector. We set the size of the basis functions to 1024.

We validate the aerial scene classification on two data sets, OT data set and UC Merced
data set. With OT data set and UC Merced data set, we randomly select 80 samples from
each class to initialize the training set and the remaining 20 samples as the testing set.
We repeated 10 classification experiments on each data set and the classification accuracy
of the 10 experiments was averaged as the final classification accuracy.

4.2. Experiment on OT data set. OT data set contains 8 aerial scene categories:
(1) Forest, (2) Mountain, (3) Open Country, (4) Coast, (5) Highway, (6) City, (7) Tall
Building, and (8) Street. We select 100 images per class. Figure 4 shows some of the
images in OT data set.

In order to study the sensitivity of the sparsity parameter, we varied their values over a
wide range. Figure 5 shows the classification performance with different sparsity parame-
ter values. The results showed that there was a wide range of sparseness values for which
the classification performance was consistent, and the best classification performance was
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Figure 4. Few example images from the OT data set
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Figure 5. Effect of the sparsity parameter value on the classification accuracy
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Figure 6. Effect of the layer of DBN and iterations of RBM on the clas-
sification accuracy

obtained at a sparsity value close to 0.4. Based on this analysis, we set the sparsity value
as equal to 0.4 to generate sparse features.

To test the effects of different layers of DBN and different iterations of RBM on the
classification performance, we verify the classification accuracy of three different layers of
DBN as shown in Figure 6.

From Figure 6, in the initial stage, the classification accuracy is significantly improved
with the increase of the number of iterations. When the number of iterations is greater
than 1000, the classification accuracy is almost unchanged. So we set the number of
iterations to 1000. Besides, the 2-layers DBN outperforms the single-layer DBN and
3-layers DBN. So we select 2-layers DBN.

To compare the scene classification performance of the spatial extension of BoVW
reported in [2], the proposed method with SPMK [8] and the SC+SVM method described
in [9], we measured the classification performance with the OT data set. Of the four
strategies that we tested, our method produced better performance, as shown in Table 1.
We compared the classification performances with and without the sparse representation.
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Table 1. Comparison with the previous reported accuracies on OT data set

Methods BoV W SPMK SC + SV M Non Sparsity With Sparsity
Accuracy 76.87% 79.12% 85.62% 84.73% 86.23%
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Figure 7. The overall accuracies with the OT data set for the proposed method

       

 

Figure 8. Few example images from the UC Merced data set

The results illustrate that using sparse representation is an efficient way to increase the
scene classification accuracy. The reason is that sparse representation provides a simple
representation of redundant information and represent features in a more concise and
effective way. The overall accuracies of OT data set are reported in Figure 7.

4.3. Experiment on UC Merced data set. UC Merced data set consists of 256× 256
color images from 21 aerial scene categories: (1) Agricultural, (2) Airplane, (3) Base-
ball diamond, (4) Beach, (5) Buildings, (6) Chaparral, (7) Dense residential, (8) Forest,
(9) Freeway, (10) Golf course, (11) Harbor, (12) Intersection, (13) Medium residential,
(14) Mobile home park, (15) Overpasses, (16) Parking lot, (17) River, (18) Runway, (19)
Sparse residential, (20) Storage tanks, and (21) Tennis court. The data set contains highly
overlapping classes and has 100 images per class. Figure 8 shows some of the images in
UC Merced data set.

To test the classification performance of our proposed method in a larger data set, we
measure the classification performance with the UC Merced data set. Compared with
BoVW, SPMK and SC+SVM, the results are shown in Table 2. Our proposed method
also has a better performance on a larger data set. We also compare the classification
performance with and without the sparse representation to validate that sparse represen-
tation is a required step to characterize the scene effectively.

According to Table 1 and Table 2, we obtain that our method does not have obvious
advantages compared with SC+SVM. The reason is the limited training data. There is
not enough data in each category to train a DBN network which can well express the
relationship between low-level features and high-level semantic representations of aerial
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Table 2. Comparison with the previous reported accuracies on UC Merced
data set

Methods BoV W SPMK SC + SV M Non Sparsity With Sparsity
Accuracy 71.86% 74% 81.67% 81.15% 82.07%
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Figure 9. The overall accuracies with the UC Merced data set for the
proposed method

image. With the increase of training data, deep network will have more obvious advantages
than shallow network.

The overall accuracies are reported in Figure 9. The proposed method also shows the
highest accuracy for the classification of the agricultural, chaparral, harbor, and runway
scenes, which have a regular textural and spatial structure.

5. Conclusions. In this paper, we propose a classification method for high resolution
aerial images based on sparse coding theory and deep belief network. First, we use dense-
SIFT to extract the features of aerial image and then we use an improved sparse coding to
represent the extracted features, which can represent the complex characteristics of aerial
image more concise and effective. Finally, the relationship between low-level features
and high-level semantic representations is represented by DBN. Experimental results on
OT data set and UC Merced data set indicate that our method efficiently utilizes spatial
information of images and obtains results that are equal to or even better than the previous
results and deep learning can be effectively applied to the field of aerial image. Under the
premise of meeting the amount of data, deep learning will have a greater advantage. As
future extensions, we plan to apply this method to different scale data sets and further
optimize feature extraction algorithm and sparse encoding mode.
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