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Abstract. To study the tire’s friction characteristics of the LuGre model, an identifi-
cation method of the tire’s parameters is put forward to obtain the static and dynamic
parameters. According to the identified static parameters, a relationship curve between
the adhesion coefficient and the slip ratio is plotted, which indicates that the simulation
result agrees well with measured results of experiment. In addition, the sensitivity of
static parameters µc, µs and σ2 to different experimental variables, including the normal
force Fn, sideslip angle γ and slip ratio s is analyzed. Experimental results show that the
static parameters are sensitive to different experimental conditions.
Keywords: The LuGre model, Static parameters, Relationship curve, Sensitivity

1. Introduction. Establishing a tire model is necessary to describe the structural pa-
rameters and mechanical characteristics of tires, which are most associated with vehicle
safety, performance, and handling stability [1]. A tire model usually can be divided into a
static model and a dynamic model. The static model builds up the relationship between
a vehicle’s velocity and tire-road friction under a steady state. The typical model is the
“Magic Formula” model, which is derived from experimental data to produce a good fit
under a steady state (i.e., constant linear and angular velocity) [2-4]. In reality, linear and
angular velocity can never be controlled independently and hence, such idealized steady-
state conditions are not reached except during the rather particular case of cruising at a
constant speed. Furthermore, the Magic Formula model cannot explain the mechanism
of a tire’s friction dynamically and cannot indicate instantaneous characteristics of tire
friction. In addition, most of the existing model-based friction characteristics use a com-
bination of classical friction models, such as the Fiala and Gim models [5,6]. However, in
applications with high-precision positioning and low-velocity tracking, the results are not
always satisfactory [7,8]. Therefore, to better describe the dynamic friction characteristics
and study the parameters identification, the LuGre friction model is used in this paper
[9].

According to different experimental conditions, the friction parameters identification
can be achieved by statically calculating different experimental data. Also, the LuGre
friction model has an advantage that agrees well with experimental results, which means
the parameters identification based on this model is feasible and reliable. In contrast
to many other static models, this model is appropriate for any vehicle motion situations
and for the development of a vehicle dynamics control system relevant to tires. This
is especially important during transient phases of vehicle operation, such as braking or
acceleration [10].
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2. LuGre Tire Model. The LuGre tire model is a typical dynamic model. It regards
friction as reciprocity between the elastic bristle of the interface with random behavior
at the microscopic level. When a tangential force acts on the bristles, the bristle deforms
elastically, like a spring, and begins to slip when the distortion is large enough.

The centralized equations based on the LuGre tire model under different road surface
conditions are expressed as follows:

dz

dt
= vr −

σ0 |vr|
θ · g(vr)

· z (1)

Fx =

(
σ0z + σ1

dz

dt
+ σ2vr

)
· Fn (2)

g(vr) = µc + (µs − µc)e
−|vr/vs|α (3)

where z denotes the average elastic deflection of the bristles; σ0 and σ1 are the longitudinal
stiffness and damping coefficients of the bristles, respectively; σ2 is the relative viscosity
damping coefficient; θ is the road surface conditions, which is set as 1 on dry asphalt, 0.65
on wet asphalt, and 0.15 on snow asphalt; Fn is the normal force on the tire; vr is the
relative velocity between the wheel and the vehicle body, and g(vr) is the positive sliding
function that can be used to describe different friction effects. Equation (3) is the typical
parameterization of g(vr) to characterize the Stribeck effect. In Equation (3), vs is the
Stribeck velocity, µc is the Coulomb friction coefficient, µs is the static friction coefficient,
and α is the Stribeck index of friction characteristics, which usually ranges from 0.5-2
under the steady state .

In the LuGre friction model, the parameters that needed to be identified include the
static parameters and dynamic parameters, and the static parameters can be identified
from the experimental data. However, the dynamic parameters identification is relatively
difficult. Table 1 shows the value of the experimental variables, which is used to identify
the static parameters.

Table 1. Value of experimental variables

Parameter Value
Fn 4000N
vr 20m/s
r 0.32m
L 0.2m
vs 5m/s
α 0.5
θ 1/0.65/0.15

3. Parameter Identification Based on the LuGre Friction Model. In the central-
ized LuGre friction model shown in Equations (1) to (3), parameters vr and Fn can be
measured by the experiment, and parameters α and vs usually are regarded as constants;
thus, the parameters that need to be identified are µc, µs, σ0, σ1 and σ2 [11]. The static
friction parameters are µc, µs and σ2 and the dynamic parameters are σ0 and σ1.

3.1. Static parameters identification. Tires are under a steady state when the average
deflection of bristles is constant (i.e., ∂z

∂t
= 0), and in this case the longitudinal force of

steady-state condition is expressed as:

Fss =
(
θ ·

(
µc + (µs − µc) · e−|vr/vs|α

)
· sgn(vr) + σ2 · vr

)
· Fn (4)
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The relationship between the longitudinal force Fx and the normal force Fn is given as:

Fx = µFn (5)

However, the coefficient of road adhesion µ is impossible to define accurately because
of its relationship with many factors, including the inherent characteristics of tires, road
surface conditions, and relative velocity. The relationship curve µ-s between the coefficient
of road adhesion µ and the slip ratio s usually is used to describe the sliding operating
mode in a practical application. The LuGre tire friction model based on the relationship
curve µ-s is expressed as follows [12]:

µ(s, w) = θ · g(s)
[
1 − zs

(
1 − e−L/zs

)
/L

]
+ σ2 · rωs/(1 − s) (6)

zss = θ · g(s)(1 − s)/(σ0 · s) (7)

g(s) = µc + (µs − µc) · e−|rws/(vs(1−s))|α (8)

where the slip ratio s is given as the range of s ∈ [0, 1], zss is the average elastic deflection
of the bristles under the steady state, L is the length of rectangular grounding contact
area, and ω is the angular velocity of the wheel.

The static parameters are identified through a nonlinear least squares method based
on corresponding experimental data by using Equation (4). According the identification
method mentioned above, the static parameters identification is simulated based on the
LuGre friction model. Table 2 gives out the exact static parameters’ values and the
identified static parameters’ results.

Also, the relationship curve µ-s between the coefficient of road adhesion and the slip
ratio can be obtained by using the identified static parameters, as shown in Figure 1. In
Equation (6), parameter σ2 is approaching approximately zero and, hence, the value of
the algebraic term σ2 ∗ rωs/(1 − s) is regarded as approximately zero.

As shown in Figure 1, the fitting curve according to the identified static parameters
based on the LuGre tire model agrees well with the measured results of experiment, which
can dynamically describe the changing laws of tire sliding characteristics under different
coefficients of road adhesion.

Table 2. The exact static parameters’ and the identified static parameters’ results

Parameter (unit) µc µs σ2 (Ns/m)
Exact parameters 0.8 1.4 0.74 × 10−5

Identified parameters 0.75 1.45 0.66 × 10−5

Error 6.25% 3.57% 10.8%

Figure 1. Relationship curve µ-s between coefficient of road adhesion and
slip ratio
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3.2. Dynamic parameters identification. The LuGre model is a typical nonlinear
system, the elastic deflection z is immeasurable, and the dynamic parameters are very
difficult to identify because of the coupling effect among the static and dynamic parame-
ters. Dynamic parameters usually are identified with a traditional approximation method.
However, the identified parameters in this method depend primarily on the selection of
the initial parameters, and the identification precision and convergence of the results
cannot be guaranteed. In this paper, the dynamic parameters identified by means of a
genetic algorithm based on the limit of the system oscillation loop curve can overcome
these shortcomings [13].

Based on the identified static parameters mentioned above, and according to Equations
(1)-(3), the dynamic parameters can be identified by means of a genetic algorithm method.
Supposing that the dynamic parameter vector is identified as Xd = [σ0, σ1]

T , taking the
wheel angle as identification error, which can be expressed as the following equation.

e(ti) = θ(ti) − θ̂(ti) (i = 1, 2, . . . , M) (9)

where θ(ti) is the actual output wheel angle at time ti, and θ̂(ti) is the identified output
wheel angle at time ti.

And a closed-loop PID control scheme was adopted to identify the dynamic parameters.
The control law of the PID is expressed as the following equation.

u(t) = kpe + kdė + ki

∫
edt (10)

where kp is the proportional constant; kd is the differential constant; ki is the integral
constant.

Take the time integral of the absolute error value as the minimum objective function
to achieve ideal transient dynamic characteristics. The optimal objective function can be
expressed as the following equation.

Jm =

∫ ∞

0

(
c1|e(t)| + c2u

2(t)
)
dt (11)

According to the above steps, the optimal dynamic parameters were iterated out by
means of genetic algorithm. And the dynamic parameters are set as follows: σ0=185N/m,
σ1=1.5Ns/m. Table 3 gives out the exact dynamic parameters’ values and the identified
dynamic parameters’ results.

Table 3. The exact dynamic parameters’ and the identified dynamic pa-
rameters’ results

Parameter (unit) σ0 (N/m) σ1 (Ns/m)
Exact parameters 191.6 1.37

Identified parameters 185 1.5
Error 3.44% 9.48%

4. Parameter Sensitivity Analysis. To study the sensitivity of static parameters
based on the LuGre tire model to experimental variables, studies on the influences of
normal force Fn, sideslip angle γ, and slip ratio s to static parameters µc, µs, and σ2 were
analyzed (The experimental sensitivity of parameter vs was ignored because it is slightly
affected by experimental conditions.). During the analysis process, vehicle speed was a
constant and the normal force was equally distributed to each wheel.

It was assumed that the influence of the experimental variables to the other two pa-
rameters could be ignored when sensitivity analysis was performed on one of the static
parameters. Meanwhile, the other two experimental variables were regarded as constants
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when sensitivity of one of the experimental variables to the static parameters was ana-
lyzed.

4.1. Influence analysis of normal force to static parameters. The influence of
normal force Fn to the static parameters is shown in Figures 2(a)-2(c).

The influences of normal force Fn to static parameters µc, µs, and σ2 present a linear
trend, as shown in Figure 2. The coulomb friction coefficient µc and the static coefficient
µs decrease linearly with the increase of the normal force; conversely, the relative viscosity
damping coefficient σ2 increases with it. In addition, parameter µs is the most sensitive
to the change of normal force Fn (whose absolute value of the straight line gradient is
0.1267); while parameter σ2 is the least sensitive to normal force Fn (whose absolute value
of the straight line gradient is 0.0001). Also, it is important to note that the results are
obtained on the premise that there is no coupling effect among the static parameters.

Figure 2. Influence of normal force to the identified static parameters

4.2. Influence analysis of sideslip angle to static parameters. The influence of
sideslip angle γ to the static parameters is shown in Figures 3(a)-3(c).

The influences of sideslip angle γ to coulomb coefficient µc and static coefficient µs

present an obvious nonlinear relationship with monotony; conversely, the influence of
sideslip angle γ to the relative viscosity damping coefficient σ2 presents a linear trend
with monotony, as shown in Figure 3. Parameters µc, and µs decrease with the increase
of sideslip angle γ, but the rate of drop tends to be slow. On the contrary, parameter
σ2 goes with a linear increase as the increase of sideslip angle γ. Similarly, experimental
results are obtained on the premise that there is no coupling effect among the static
parameters.

4.3. Influence analysis of slip ratio to static parameters. The influence of slip ratio
s to the static parameters is shown in Figures 4(a)-4(c).

It can be seen from Figure 4 that the influences of slip ratio s to coulomb coefficient µc,
static coefficient µs, and relative viscosity damping coefficient σ2 present obvious nonlinear
characteristics with a non-monotonous trend. The influence of slip ratio s to parameters
µc and µs has good agreement: when s grows gradually from zero, parameters µc, and µs

increase sharply close to linear and reach their peaks; when the slip ratio s is about to be
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Figure 3. Influence of sideslip angle to the identified static parameters

Figure 4. Influence of slip ratio to the identified static parameters

0.1, then decline slowly. Compared to the influence of slip ratio s to parameters µc, and
µs, the influence of slip ratio s to the parameter σ2 is just the opposite: when s grows
gradually from zero, parameter σ2 decreases sharply and reaches its minimum; when the
slip ratio s is about to be 0.1, then increases slowly. Similarly, the coupling effect among
the static parameters also can be ignored during the influence analysis of sideslip angle
to parameters.

Figures 2-4 show that the static parameters µc, µs, and σ2 are sensitive to different
experimental variables, although they present different changing trends. The simulation
results validate the influence of experimental conditions to the static parameters.

5. Conclusions. In this paper, the static and the dynamic parameters are identified
based on the LuGre friction model. Among the identified parameters, µc, µs, and σ2 are
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static parameters, whose values can be identified using the least squares method; and
σ0, and σ1 are dynamic parameters, whose identification process is somehow difficult and
complex, which can be identified by means of genetic algorithm. Experimental results
show that identification method based on the LuGre friction model is appropriate for
studying the static parameters. Study of the sensitivity of different static parameters to
different experimental conditions was conducted on the premise that the coupling effect
among the static parameters is ignored. Simulation results show that the identification
process of the static parameters is sensitive to different experimental variables, including
the normal force Fn, the sideslip angle γ, and the slip ratio s.

However, there are still some disadvantages in this paper. For example, the influence
of combined analysis of the experimental conditions to the identified parameters has not
been presented in this paper; paper mainly completed the parameters identification when
the vehicle is in the motion, and realized the sensitivity analysis of the experimental
variables to the identification parameters. In the later studies, more research about the
combined experimental conditions analysis will be studied.
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