
ICIC Express Letters
Part B: Applications ICIC International c⃝2016 ISSN 2185-2766
Volume 7, Number 9, September 2016 pp. 1963–1968

AN EFFICIENT MATRIX INVERSION ALGORITHM ON SPARK

Wei Lu, Xiangyu Zhao, Ergude Bao∗ and Weiwei Xing

School of Software Engineering
Beijing Jiaotong University

No. 3, Shangyuancun, Haidian District, Beijing 100044, P. R. China
∗Corresponding author: baoe@bjtu.edu.cn

Received January 2016; accepted April 2016

Abstract. Matrix inversion operation is a fundamental building block of many compu-
tational tasks in many fields. The operation has been successfully parallelized on Hadoop,
while it is challenging to parallelize it on Spark, a more up-to-date parallel computation
framework than Hadoop. In this paper, we address this problem by presenting an efficient
and scalable parallel algorithm on Spark by splitting the input matrix into independent
blocks for parallel LU decomposition and splitting the LU matrices into largely inde-
pendent blocks for parallel triangular matrix inversion. Experimental results show our
algorithm is faster than the previous Hadoop based algorithm with sufficient scalability.
Keywords: Matrix inversion, Spark, Linear algebra, MapReduce

1. Introduction. Matrix inversion operation is a fundamental building block for many
computational tasks in various fields such as image processing, wireless communication,
and computer graphics. Basically, matrix inversion is used in these applications to solve
linear equations: given an equation Ax = B, where A is a square matrix of order n, x
and B are both vectors with n elements, x could be computed with x = A−1B.

The inverse of a matrix can be computed using many methods, such as LU decomposi-
tion [1], QR decomposition [2], SVD decomposition [3] and Gauss-Jordan elimination [4].
The matrices processed are usually very large and become even larger in the current big
data period. Therefore, how to parallelize the matrix inversion operation has become an
important research topic.

To parallelize the matrix inversion operation, two things should be decided: (1) what
matrix inversion method to parallelize, and (2) what programming framework to use. For
the first thing, Xiang et al. [5] explained that using the LU decomposition method for ma-
trix inversion is advantageous in parallelization over other methods. For the second thing,
currently, Hadoop is the most widely used programming framework for parallel computa-
tion, while Spark is a much newer framework for this task. The major difference between
Spark and Hadoop is that Spark provides in-memory primitives while Hadoop needs a
large amount of disk operations, so Spark could be tremendously faster than Hadoop. An-
other difference between Spark and Hadoop is the fault tolerance policy. Spark’s Resilient
Distributed Dataset (RDD) model could rebuild lost data for fault tolerance without the
need to replicate data as Hadoop. MLlib [6] and SystemML [7] are machine learning
libraries for Spark and Hadoop, respectively. Although they had implemented various
parallel matrix operations on Spark and Hadoop, none includes matrix inversion or LU
decomposition. Sparkler [8] is an extension of Spark to support the decomposition of large
size but low rank matrices. Therefore, it is important to parallelize matrix inversion with
LU decomposition on Spark.

In this paper, we design the Spark based parallel matrix inversion algorithm by reducing
the input matrix into a set of independent blocks which can be fit into memory and
iteratively processing the blocks. In each iteration, the block is processed in parallel. Note

1963



1964 W. LU, X. ZHAO, E. BAO AND W. XING

that if the primitives of Spark could be further enriched to allow more user control upon
the data processing, our algorithm can be easily extended to support parallel computation
among blocks, since the blocks are independent. Therefore, our algorithm and this paper
would thus be a pioneer before the enrichment of the Spark primitives. More specifically,
the algorithm has three steps: (1) decompose the input matrix into two triangular matrices
first, (2) invert the two triangular matrices, and (3) compute the inverse of the input
matrix with the two inverted triangular matrices. In the first two steps, independent
blocks no larger than the memory size are obtained and processed one by one.

We organize the rest of this paper as follows. In Section 2, we present some basic matrix
knowledge. In Section 3, we introduce the parallel matrix inversion algorithm on Spark.
In Section 4, we will describe how to tune the performance on Spark. In Section 5, we
present the experimental results. The conclusion is discussed in Section 6.

2. Preliminaries. A square matrix is the matrix which has the same number of rows
and columns. The order of a square matrix is the number of rows or columns. The
inverse of a square matrix A of order n is another matrix B such that AB = BA = I,
where matrix I is the n × n identity matrix. A matrix A is invertible if and only if A is
non-singular, that is, A is of full rank n. The element of matrix A in the ith row and jth
column is denoted as Aij. Below are the main idea about how to invert a matrix with LU
decomposition.

The LU decomposition method [1] factors a matrix A into two triangular matrices by
A = LU , where L is a lower triangular matrix, and U is an upper triangular matrix. After
the LU decomposition, the inverse of A can be computed as A−1 = U−1L−1. Therefore,
the problem of computing the inverse of A can be reduced to computing the inverses of
the triangular matrices L and U .

The LU decomposition algorithm can be found in many references, so we will not give
more introduction. Equation (1) shows how to invert a lower triangular matrix. Because

(AT )−1 = (A−1)
T
, an upper matrix can be transposed to a lower triangular matrix to

compute its inverse.

[A−1]ij =


0 for i < j

1
[A]ii

for i = j

− 1
[A]ii

∑i−1
k=j[A]ik [A−1]kj for i > j

(1)

3. Parallel Matrix Inversion. The algorithm to invert a matrix on Spark in parallel
has three steps: (1) LU decomposes the input matrix into a lower triangular matrix and
an upper triangular matrix, (2) inverts the two triangular matrices, and (3) computes the
inverse of the input matrix with the two inverted triangular matrices. Each step can be
parallelized, and are discussed below.

3.1. Parallel LU decomposition. As discussed above, we need to split the input matrix
into blocks for LU decomposition, Equation (2) and subgraph (a) in Figure 1 illustrate
the blocking strategy. The input matrix is split into 4 matrices: A11, A12, A21 and A22

of orders r × r, r × (n − r), (n − r) × r, and (n − r) × (n − r), respectively, where
n is the order of the input matrix and r << n. Accordingly, each of the two output
matrices are also composed of 3 blocks: L11, L21 and L22 of orders r × r, (n − r) × r
and (n − r) × (n − r), respectively for the lower triangular matrix, and U11, U12 and U22

of orders r × r, r × (n − r) and (n − r) × (n − r), respectively for the upper triangular
matrix. The relationships between the blocks in the input matrix and the blocks in the
output matrix are given in Equation (3). Therefore, L11, L21, L22, U11, U12 and U22 can
be computed as below. [

A11 A12

A21 A22

]
=

[
L11

L21 L22

] [
U11 U12

U22

]
(2)



ICIC EXPRESS LETTERS, PART B: APPLICATIONS, VOL.7, NO.9, 2016 1965
A11 = L11U11

A12 = L11U12

A21 = L21U11

A22 = L21U12 + L22U22

(3)

• L11 and U11: Since r << n, A11 can be loaded into memory and L11 and U11 can be
computed directly with LU decomposition algorithm on single node.

• L21 and U12: Given L11 and U11, L21 and U12 can be computed with Equation (4).
Since the rows of L21 are independent upon each other according to the equation,
the computation of L21 can be parallelized on Spark. Similarly, since the columns
of U12 are also independent upon each other, the computation of U12 can also be
parallelized. [L21]ij = 1

[U11]ii

(
[A21]ij −

∑i−1
k=1 [L21]ik [U11]kj

)
[U12]ij = 1

[L11]ii

(
[A12]ij −

∑i−1
k=1 [L11]ik [U12]kj

) (4)

• L22 and U22: A22 is split recursively into 4 matrices A′
11, A′

12, A′
21 and A′

22 and
decomposed as discussed above. When Ak

22 in the kth recursion is small enough to
fit into memory, Lk

22 and Uk
22 are computed from Ak

22−L21U12 as discussed in Section
2. Subgraph (b) in Figure 1 shows the steps about the recursion.

(a) Block LU method (b) Process of block LU
method

Figure 1. Block method for LU decomposition

Algorithm 1 gives the pseudo code for the parallel LU decomposition.

Algorithm 1 Parallel LU decomposition

1: function ParaLUDecom(A)
2: if order of A < 2K then
3: LUDecomposition(A)
4: else
5: split matrix into A11, A12, A21, A22

6: L11 and U11 = LUDecomposition(A11)
7: L21 = parallel process A21 and L11 with Equation (4)
8: U12 = parallel process A12 and U11 with Equation (4)
9: L22 and U22 = ParaLUDecom(A22 − L21U12)

10: L = combine L11, L21 and L22

11: U = combine U11, U12 and U22

12: end if
13: end function



1966 W. LU, X. ZHAO, E. BAO AND W. XING

3.2. Parallel triangular matrix inversion. As discussed in Section 2, the inverse of
the upper triangular matrix U can be computed with its transposed lower triangular
matrix UT , so here we only discuss how to compute the inverse of the lower triangular
matrix L. Equation (5) and subgraph (a) in Figure 2 illustrate the blocking strategy for L:
it is split into 3 matrices L11, L21 and L22 of orders r× r, (n− r)× r and (n− r)× (n− r),
respectively. Its inverse is also a lower triangular matrix with three matrices B11, B21

and B22 of orders r × r, (n − r) × r and (n − r) × (n − r), respectively. Among these
matrices, L11, L22, B11 and B22 are all lower triangular matrices. Equation (6) gives the
relationships between these matrices, where I is the identity matrix of order n. Therefore,
B11, B21 and B22 can be computed as below.[

L11

L21 L22

] [
B11

B21 B22

]
= I (5) L11B11 = I

L21B11 + L22B21 = 0
L22B22 = I

(6)

• B11: Since the order of L11 is small enough, B11 can be computed directly as discussed
in Section 2.

• B21: The computation of B21 is dependent on L−1
22 = B22. Given B22, as well as

L21 and B11, it can be computed with Equation (7). Since the computation of B21

requires only multiplications, it can be easily parallelized on Spark.

B21 = B22(−L21B11) (7)

• B22: Since the order of L22 is large, it has to be computed recursively similar to
Section 3. L22 is recursively split into 3 matrices L′

11, L′
21 and L′

22. When Lk
22 in the

kth recursion is small enough to fit into memory, Bk
11 and Bk

21 can be computed as
discussed above. In this way, Bk−1

22 , Bk−2
22 , . . . and B22 can be computed one by one.

Subgraph (b) in Figure 2 shows the steps about the recursion.

(a) Block triangular matrix inversion (b) Process to invert
triangular matrix

Figure 2. Block method for triangular matrix inversion.

Algorithm 2 gives the pseudo code for the parallel lower triangular matrix inversion.

4. Performance Tuning. We do the following optimizations on Spark to tune the per-
formance of our algorithm in its implementation stage.

• Keep intermediate data in memory. As discussed in Section 3, the computation of
L21, U12 and B21 require L11, U11 and B11, respectively, so we keep them in memory
rather than writing to disk for further computation.

• Serialize data. After the blocks of the input matrix are all computed, we need to
shuffle and combine them. In order to reduce the network load for this operation,
we serialize the data to reduce the data size. Though it takes some time for data
serialization and deserialization, the total computation time can be reduced. The



ICIC EXPRESS LETTERS, PART B: APPLICATIONS, VOL.7, NO.9, 2016 1967

framework kryo [10] is used for serialization rather than Spark’s built-in serializer
due to its better performance.

• Tune parallelization scale. The parallelization scale is a key factor affecting our
algorithm’s runtime. In order to fit the number of computing nodes and achieve a
suitable parallelization scale, we set a relatively small number of partitions in the
beginning and let Spark dynamically increase the number. Before we trigger the
shuffle event, we redistribute the RDD to have fewer partitions.

Algorithm 2 Parallel triangular matrix inversion

1: function ParaInvertTrian(L)
2: if order of L < 2000 then
3: invert L with Equation (1)
4: else
5: split L into L11, L21, L22

6: B11 = invert L11 with Equation (1)
7: B22 = ParaInvertTrian(L22)
8: B21 = parallel process B22, L21 and B11 with Equation (7)
9: B = combine B11, B21 and B22

10: end if
11: end function

5. Experimental Results. In the experiments, we investigated the scalability of our
algorithm on Spark in cluster mode with multiple computing nodes, we also compared
our algorithm to the matrix inversion algorithm on Hadoop as discussed in [5]. The
computer we used had 4 nodes with 8 cores of 2GHz and 8GB memory in each node.
The version of Spark was 1.3.1 with Scala 2.11.7. The version of Hadoop was 2.4.1 with
Java 1.7. For the test with Spark, three matrices were used for orders 20K, 30K and 40K
respectively.

5.1. Scalability of cluster mode. First test was Spark’s cluster mode with the YARN
[11] cluster manager. In this mode, Spark runs the tasks with multiple computing nodes
from 1 to 4. YARN was chosen among a variety of cluster managers (e.g., Mesos [12]
and Spark’s cluster manager itself), because of its stronger support in task scheduling.
Subgraph (a) in Figure 3 shows the test results: blue, red and black lines represent
the runtime for matrices of orders 20K, 30K and 40K, respectively. The runtime of our
algorithm generally decreases in linear with the increment of computing nodes, though it
is not as linear as in local mode due to the overhead of data transfers between nodes. In
general, our algorithm is scalable in cluster mode with various data sizes.

(a) Cluster mode (b) Comparison with [5]

Figure 3. Test results in cluster mode



1968 W. LU, X. ZHAO, E. BAO AND W. XING

5.2. Comparison with existing method. Since there has been no other matrix inver-
sion algorithm implemented on Spark, we compared our algorithm to the matrix inversion
algorithm on Hadoop [5]. Both were run in cluster mode with YARN on 1 to 4 nodes.
For each test, the ratio of the runtime with our algorithm and with [5] was calculated and
subgraph (b) in Figure 3 shows the results. In general, all the ratios for different tests
are below 1 with the average 0.75, meaning that our algorithm is faster. The reason for
our algorithm’s fast speed comes from both our algorithm’s parallelization and Spark’s
in-memory operations.

6. Conclusion and Future Work. In this paper we present a scalable matrix inversion
algorithm on Spark. The algorithm is composed of three steps: block LU decomposition,
block triangular matrix inversion and computing the inverse of the input matrix with the
two inverted triangular matrices. Our experimental evaluation shows that our algorithm
has good scalability and performance. One promising future work is to improve the LU
decomposition step by adding parallelization among blocks and reducing the communica-
tion between each block.

Acknowledgment. This work is partially supported by National Natural Science Foun-
dation of China (No. 61100143, 61272353, 61370128), Program for New Century Ex-
cellent Talents in University (NCET-13-0659), Beijing Higher Education Young Elite
Teacher Project (YETP0583), and Fundamental Research Funds for the Central Uni-
versities (2014JBZ004, 2015RC045). The authors also gratefully acknowledge the helpful
comments and suggestions of the reviewers.

REFERENCES

[1] W. H. Press, Numerical Recipes 3rd Edition: The Art of Scientific Computing, Cambridge University
Press, 2007.

[2] S. Lüpke, Lu-decomposition on a massively parallel transputer system, PARLE’93 Parallel Archi-
tectures and Languages Europe, pp.692-695, 1993.

[3] M. E. Wall, A. Rechtsteiner and L. M. Rocha, Singular value decomposition and principal component
analysis, A Practical Approach to Microarray Data Analysis, pp.91-109, 2003.

[4] B. De Schutter and B. De Moor, The QR decomposition and the singular value decomposition in the
symmetrized max-plus algebra, SIAM Journal on Matrix Analysis and Applications, vol.19, no.2,
pp.378-406, 1998.

[5] J. Xiang, H. Meng and A. Aboulnaga, Scalable matrix inversion using mapreduce, Proc. of the 23rd
International Symposium on High-Performance Parallel and Distributed Computing, pp.177-190,
2014.

[6] X. Meng, J. Bradley, B. Yavuz, E. Sparks, S. Venkataraman, D. Liu, J. Freeman, D. Tsai, M. Amde,
S. Owen et al., Mllib: Machine learning in apache spark, arXiv Preprint arXiv:1505.06807, 2015.

[7] A. Ghoting, R. Krishnamurthy, E. Pednault, B. Reinwald, V. Sindhwani, S. Tatikonda, Y. Tian and
S. Vaithyanathan, Systemml: Declarative machine learning on mapreduce, IEEE the 27th Interna-
tional Conference on Data Engineering, pp.231-242, 2011.

[8] B. Li, S. Tata and Y. Sismanis, Sparkler: Supporting large-scale matrix factorization, Proc. of the
16th International Conference on Extending Database Technology, pp.625-636, 2013.

[9] S. Seo, E. J. Yoon, J. Kim, S. Jin, J.-S. Kim and S. Maeng, HAMA: An efficient matrix computa-
tion with the mapreduce framework, IEEE the 2nd International Conference on Cloud Computing
Technology and Science, pp.721-726, 2010.

[10] H. Karau, A. Konwinski, P. Wendell and M. Zaharia, Learning Spark: Lightning-Fast Big Data
Analysis, O’Reilly Media, Inc., 2015.

[11] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar, R. Evans, T. Graves, J. Lowe,
H. Shah, S. Seth et al., Apache Hadoop YARN: Yet another resource negotiator, Proc. of the 4th
Annual Symposium on Cloud Computing, p.5, 2013.

[12] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph, R. H. Katz, S. Shenker and
I. Stoica, Mesos: A platform for fine-grained resource sharing in the data center, NSDI, vol.11,
pp.22-22, 2011.


