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Abstract. In this paper, a robust tracking method based on improved sparse prototypes
is proposed by solving a Bayesian inference problem. Different from the traditional sparse
prototypes based tracking method, we employ the sparse representation for the observation
instead of the collaborative representation, which can effectively reject the redundant fea-
tures in target subspace. Moreover, an effective numerical method based on Accelerated
Proximal Gradient (APG) is applied within the process of object representation mini-
mization. Both qualitative and quantitative experiments show that the proposed method
achieves more favorable performance than several competitive methods.
Keywords: Visual tracking, Bayesian inference, Improved sparse prototypes

1. Introduction. As one of the underlying issues in computer vision, object tracking is of
great importance for its multitudinous potential applications including image compression,
video surveillance, activity analysis and so on. While much work has been done in the
past decades, it is still a challenging task in numerous aspects including pose variation,
shape deformation, varying illumination, camera motion, and occlusions.

Recently, sparse representation has been extensively studied for object tracking [1-
5]. In [1], Mei and Ling present an L1 tracker based on sparse representation. The
candidate target region is constructed with sparse representation of target templates and
the error term is handled with trivial temples. However, the L1 tracker needs to solve a
series of L1-minimization problems with rather expensive computational cost. In [2], an
efficient gradient descent approach is applied to accelerating the solving process of the
L1 minimization problem. Some other sparse based methods have been proposed from
different views. In [3], Jia et al. construct an alignment pooling that integrates both the
local and global information of target region. Zhong et al. [4] develop a collaborative
model based on two independent sparsity-based trackers and evaluate the candidates by
integrating these information.

Inspired by the study of subspace learning, some collaborative representation based
methods have also been proposed to effectively employ all the feature bases in target
subspace [5-7]. In [5], Xiao et al. apply the L2-norm to regulating the target coefficient
and trivial coefficient. Although the appearance model in [5] has a much lower computa-
tional complexity for the convex and differentiable property of L2-norm compared to the
L1-tracker, the weak sparse projection coefficient will cause the redundant features, which
may deteriorate the ambiguity of square templates. To reject the outliers in the process
of tracking, Wang et al. develop sparse prototypes model which integrates the subspace

1885



1886 H. YAN, C. LIU AND Y. SHI

collaborative representation and trivial templates sparse representation [6]. However, we
empirically find that the information in subspace is not all from the target. As the col-
laborative representation needs to use all these feature bases in subspace, the constructed
samples can be interfered by these redundant features (e.g., background), which may
further affect the measure to candidates.

Motivated by the above-mentioned work, in this paper, we present a robust tracking
method based on the improved sparse prototypes. There are two main differences between
[6] and our work. Firstly, we use the L1-norm to regulate both the target coefficient and
the trivial coefficient but not only for the trivial coefficient, which ensures our appear-
ance model can effectively reject redundant features in target subspace. Secondly, an
effective numerical method based on Accelerated Proximal Gradient (APG) [8] is intro-
duced to solve the target projection coefficient within the process of object representation
minimization.

In the rest of our paper, Section 2 describes the object representation based on the
improved sparse prototypes. After that, the tracking framework is proposed in Section
3. The experiments are then given in Section 4. Finally, the conclusion is introduced in
Section 5.

2. Object Representation. In this section, we introduce the object representation with
improved sparse prototypes and an effective numerical algorithm based on APG for the
solution of the minimization problem to object function.

2.1. Improved sparse prototypes. Given an orthogonal PCA subspace U ∈ Rd×m,
where d and m are the feature dimension and the number of PCA basis, respectively. The
target region y ∈ Rd×1 can be represented by the subspace with projection coefficient z ∈
Rm×1 and a Laplacian error term e ∈ Rd×1, and thus we have the following minimization
problem in [6]

min
z,e

1

2
‖y − Uz − e‖2

2 + λ‖e‖1 (1)

where λ is a penalty parameter. However, we note that the image subspace still includes
the redundant features. To remove redundant features while preserving the useful parts in
the subspace, we use L1-norm to select useful features, and we have the improved sparse
prototypes:

min
z,e

1

2
‖y − Uz − e‖2

2 + µ‖z‖1 + λ‖e‖1 (2)

where µ is a penalty parameter. The ‖z‖1 is employed to select the useful features in
target coefficient, while the ‖e‖1 is used to reject outliers. Figure 1 shows the object
representation with improved sparse prototypes.

Figure 1. The object representation



ICIC EXPRESS LETTERS, PART B: APPLICATIONS, VOL.7, NO.9, 2016 1887

2.2. Effective numerical method for solving (2). It can be seen that there is no close-
form solution for Equation (2), and thus we propose a special method for the minimization
of Equation (2). We extract the convex and differentiable part of Equation (2) as:

F (z, e) =
1

2
‖y −Uz − e‖2

2 (3)

Then, we can iteratively estimate z and e. When we fix projection term z, the error term
e can be directly estimated with Soft-threshold operation in [6]. When we fix error term e,
the target projection term z can be estimated via the APG method. The whole iterative
method is summarized in Algorithm 1. It can be seen that there are two subproblems in
Algorithm 1:

ek+1 = arg min
e

λ‖e‖1 +
1

2
‖y − Uzk − ek‖2

2 (4)

zk+1 = arg min
z

µ‖z‖1 +
ξ

2

∥

∥

∥

∥

zk − gz
k+1 +

1

ξ
∇zF

(

gz
k+1, ek+1

)

∥

∥

∥

∥

2

2

(5)

Algorithm 1 Effective numerical method for solving (2)

1: set e0 = e−1 = 0, z0 = z−1 = 0, and t0 = t−1 = 1
Input: The PCA subspace U, the candidate sample y, the Lipschitz constant ξ

2: for k = 0, 1, . . ., until both the z and e are convergent to optimal state do
3: ek+1 = arg min

e
λ‖e‖1 + 1

2
‖y −Uzk − ek‖2

2

4: gz
k+1 = zk +

tk−1

tk
(zk − zk−1)

5: zk+1 = arg min
z

µ‖z‖1 + ξ

2

∥

∥zk − gz
k+1

+ 1

ξ
∇zF

(

gz
k+1

, ek+1

)
∥

∥

2

2

6: tk+1 =
1+

√
1+4t2

k

2

7: end for
Output: The optimal z

∗ and e
∗

We refine α
e
k = y − Uzk, α

z
k = gz

k+1
− 1

ξ
∇z

(

gz
k+1

, ek+1

)

, ϕ = µ

ξ
. As ∇zF (z, e) =

UT(Uz + e − y), we can easily get solutions:

z∗k+1 = Sλ (αe
k) (6)

e∗

k+1 = Sϕ (αz
k) (7)

where Sτ (x) is the soft-threshold operation defined as Sτ (x) = sgn(x) (| x | −τ).

3. Tracking Framework. The object tracking task can be cast as a Bayesian infer-
ence problem in the hidden Markov model. Given a series of observed samples y1:t =
{y1,y2, . . . ,yt}, the purpose is to estimate the hidden state variable xt recursively:

p (xt|y1:t) ∝ p (yt|xt)

∫

p (xt|xt−1) p (xt−1|y1:t−1) dxt−1 (8)

where xt is the object state, and yt is the observation at time t. p(xt|xt−1) is called the
motion model that describes the state transition between two continuous object states
while p(yt|xt) indicates the observation model which is applied to computing the likelihood
of candidates.
Motion Model: Let xt = {lx, ly, θ, s, α, φ}, where lx, ly, θ, s, α, and φ indicate x, y trans-
lations, rotation angle, scale, aspect ratio, and skew respectively. These affine parameters
are supposed to be independent and modeled by six scalar Gaussian distributions. We
use the random walk to formulate the state transition, i.e., p(xt|xt−1) = N(xt;xt−1,Ψ),
where Ψ is a diagonal covariance matrix.
Observation Model: It is necessary to take the occlusion into consideration for the
measure to candidates, and we note the precise location can benefit from the error term
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e. In this paper, we take the mask in [6] to distinguish non-occluding and occluding parts
for different operations in the likelihood function:

p
(

yi|xi
)

= exp
(

−‖ρi ⊙
(

yi −Uzi
)

‖2

2 − ω‖1 − ρ
i‖1

)

(9)

where xi is the ith sample of candidates, yi denotes the image patch predicated by xi,

and ρ
i = [ρi

1, ρ
i
2, . . . , ρ

i
d]

T
indicates the zero elements vector of error term ei. If the jth

element of ei is 0, then ρi
j = 1; otherwise ρi

j = 0. ⊙ is the Hadamard product, and ω

denotes a penalty term. The former part of Equation (9) accounts for the reconstruction
error of unoccluded proportion of the target image, and the latter part aims to handle
the occluded pixel.
Online Update: The online update of target subspace is important to the changes of
object in the process of tracking. As the error term e can identify the outliers, the samples
used to update the subspace can be collected as:

yi
j =

{

yi
j |ei

j| = 0
µj otherwise

(10)

where yi
j is the jth element of the ith candidate sample, and µj is the jth element of mean

vector of subspace. Then, we can use the collected samples to update the subspace with
the incremental principal component method in [7].

4. Experiments. The proposed tracker is implemented in MATLAB and runs at 4
frames per second on a 3.06 GHz i7 core PC with 4GB memory. We empirically set
λ = 0.024, µ = 0.2, and the Lipschitz constant ξ = 6. The location of the target is
manually denoted in the first frame. 16 PCA bases are used for the subspace in all the
sequences. Our proposed tracker is incrementally updated when 5 usable image patches
are accumulated. To prove the effectiveness of the proposed algorithm, we use six chal-
lenge image sequences which contain different challenging factors (e.g., severe occlusion,
motion blur) and compare our method with four competitive methods: SCM [4], IVT [7],
L2-RLS [5], and OTSP [6].

Table 1. Average overlap rate. The best result is shown in bold font.

Sequence IVT SCM L2-RLS OTSP Ours
Occlusion2 0.73 0.82 0.78 0.74 0.85

DavidOutdoor 0.52 0.38 0.75 0.74 0.75
DavidIndoor 0.44 0.51 0.23 0.45 0.77

Singer1 0.47 0.84 0.24 0.80 0.84
Face 0.71 0.56 0.73 0.63 0.78
Deer 0.24 0.61 0.60 0.58 0.68

Average 0.52 0.62 0.56 0.66 0.78

Table 2. Average center location error. The best result is shown in bold font.

Sequence IVT SCM L2-RLS OTSP Ours
Occlusion2 7.8 4.4 5.5 9.0 3.7

DavidOutdoor 52.4 67.1 6.0 8.5 5.7
DavidIndoor 35.9 17.7 132.6 26.1 3.3

Singer1 11.9 3.3 72.8 3.0 2.7
Face 15.0 46.9 13.8 48.4 11.9
Deer 135.2 10.1 9.4 11.3 6.2

Average 43.0 24.9 40.0 17.7 5.6
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Figure 2. Sample tracking results on six challenging sequences. (a) Oc-
clusion2 and DavidOutdoor with severe occlusion. (b) DavidIndoor and
Singer1 with illumination variation. (c) Face and Deer with motion blur.

Figure 3. Quantitative evaluation of the trackers in terms of position
errors (in pixels). (a) Occlusion2, DavidOutdoor. (b) Singer1, DavidIndoor.
(c) Face, Deer.

4.1. Quantitative evaluation. Quantitative evaluation is applied to evaluating the ef-
fectiveness of tracking algorithms. We evaluate the aforementioned algorithms by com-
puting their average overlap rates and center errors. A bigger overlap rate and a smaller
center error mean a more proper result. Given the result of each frame, and corresponding
ground truth, we can get the overlap rate and the center error by the PASSCAL VOC [9]
criterion and the Euclidian distance, respectively. The results of overlap rate are listed in
Table 1, and the results of center error are listed in Table 2 and Figure 3.
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4.2. Qualitative evaluation.
Severe Occlusion: We test two sequences (Occlusion2, DavidOutdoor) characterizing
in having either long-time severe occlusion or partial occlusion. The IVT tracker does
not take the occlusion into consideration, and it is less effective in both two sequences.
Although the OTSP considers the occlusion in object representation, the redundant fea-
tures of subspace can worsen the results. Overall, our tracker can perform well in both
the two sequences.
Illumination Change: Figure 2(b) presents the tracking results in the sequences with
drastic illumination change. Moreover, the target scale and rotation also change rapidly.
Although the IVT, L2-RLS, and OTSP tracker adopt the incremental PCA, it is difficult
to handle the changes of object for the interference of redundant features. Compared
with these trackers, our improved appearance model can reject the redundant features,
and obtain more effective results.
Motion Blur: Figure 2(c) shows results from two challenging sequences with abrupt
motion. The motion blur is a challenging problem which can increase the difficulty to
predict the location of target. We note that our tracker can track well in sequences of Face
and Deer, which can be attributed to the good balance between sparse representation and
collaborative representation. Besides, we also employ the Laplacian error term to reject
the outliers. Overall, our tracker can perform well in terms of motion blur.

5. Conclusion. In summary, based on the framework of sparse prototypes in [6], we
adopt L1-norm to regulate the projection coefficient for the rejection of redundant features.
Furthermore, we also introduce an effective numerical method to solve the minimization
of improved object representation. Thus, our tracker can effectively reject the redundant
features while keeping enough useful feature information. Extensive experiments show
that our method performs better than several competitive methods. In the future, we
plan to introduce discriminate information in the object representation for more effective
tracking results.
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