
ICIC Express Letters
Part B: Applications ICIC International c⃝2016 ISSN 2185-2766
Volume 7, Number 9, September 2016 pp. 1879–1884

MINING CRITICAL NODES IN SOFTWARE EXECUTION NETWORK
BASED ON COMPLEX NETWORK

Lei Wang1,2,3,∗, Jun Dong1,3 and Jiadong Ren1,3

1College of Information Science and Engineering
Yanshan University

3The Key Laboratory for Computer Virtual Technology and System Integration of Hebei Province
No. 438, Hebei Ave., Qinhuangdao 066004, P. R. China

∗Corresponding author: wangl216@163.com; donycosmos@163.com; jdren@ysu.edu.cn
2E&A College

Hebei Normal University of Science and Technology
No. 360, Hebei Ave., Qinhuangdao 066004, P. R. China

Received February 2016; accepted May 2016

Abstract. It is significant for measuring the importance of nodes accurately to improve
software stability and robustness in software network. A software execution directed
network takes function as a node and relationship of function as an edge in this paper.
To find the critical nodes in the network, a novel method is proposed to measure the
nodes’ importance by means of depth search mining in software execution. According
to the principle of cascading failure, a novel critical nodes metrics FID is defined for
nodes measuring and sorting. Critical nodes mining (CNM) algorithm is put forward for
calculating FID value of each node and sorting. We choose top-ranking nodes as critical
nodes which play an important role in software execution process. Experimental results
show that CNM algorithm can measure the critical nodes accurately in software network.
Keywords: Software execution network, Complex network, Critical nodes

1. Introduction. In complex networks, cascading failures usually occur when one part
of the system fails. It will lead to the nearby nodes to take up the slack for the failed
component. This may cause the other nodes failing. Cascading failures also occur in
software execution network. The node which can cause more nearby nodes failing plays
an important role in software network, and it is considered as a critical node. Therefore,
it is significant for measuring the importance of nodes accurately.

Betweenness [1] was utilized to measure the importance of nodes, and the larger be-
tweenness it has, the more important status it has in network. In order to predict the
behavior of percolation on random graphs which was under general types of breakdown
or interference, node degree [2] was used to measure the importance of nodes in network,
and the nodes with larger degree are considered as critical ones. Degree metric [3] was
proposed to measure the importance of nodes in network, namely, if a node has larger in-
degree, it will be suggested to undertake important task in network. However, the results
obtained by these methods mentioned above are not very accurate. Study of Xiao and
Xiao [4] showed that protect a small amount of critical nodes can improve the robustness
significantly, and proved that some critical nodes missing would reduce the efficiency of
purposeful attack. Nodes reachability metric [5] was proposed to measure the importance
of nodes in network. It is more accurate than the degree and betweenness measures, but
the time complexity is not reduced. Kitsak et al. [6] believed that nodes importance was
related to its position in global network. They adopted k-shell decomposition analysis to
obtain ranking index of node importance, and results were more accurate than by using de-
gree and betweenness. “Complexity” [7] is defined as measure metric to compare software
network and corresponding random networks, and find the important nodes in network

1879



1880 L. WANG, J. DONG AND J. REN

with PageRank algorithm. Laplacian-based centrality was extended [8] and adopted the
idea of PageRank to introduce global connectivity between all pairs of nodes with certain
strength. NodeRank [9] was defined to assign a numerical weight to each node in a graph,
and measure relative importance of that node in software. The critical nodes ranking
results are not unique, which were measured by PageRank and its extended algorithms.
ClusterRank algorithm [10] is proposed to identify influential nodes in very large-scale
directed networks and it outperforms some benchmark algorithms such as PageRank and
degree. Multiple Attribute Fusion (MAF) method [11] is proposed to identify influential
nodes, and it gains more information propagation efficiency in different types of networks.
Wei et al. [12] used an edge weighting method by adding the degree of its two end nodes
to construct weighted networks, and proposed a weighted k-shell decomposition method
to identify the node importance in complex networks.

Critical nodes have higher importance degree and greater impact in software execution
process. CNM algorithm based on complex network is proposed to mine the critical nodes
in software network. In CNM algorithm, we define FID as the measuring metrics of nodes’
importance, and sort the nodes by the FID value. Top-k ranking nodes can be regarded
as critical nodes.

The remaining paper is organized as follows. Section 2 introduces the foundational
definitions. Process of constructing software execution directed networks and CNM algo-
rithm are given in Section 3. Section 4 presents our experimental results and analysis.
Section 5 contains concluding remarks.

2. Definitions. Software functions can be decomposed into reusable elements (such as
packages, classes, libraries, interfaces, objects, methods, and compilation units). A soft-
ware topology network is formed in which we take these elements as nodes and the rela-
tionship between the nodes as edges.

The term G = (V, E) is used to denote a graph G, where V = {v1, v2, . . . , vn} represents
a set of nodes, E = {eij = (vi, vj) : vi, vj ⊂ V } represents a set of edges, and eij is defined
as follows:

eij =

{
1 vi → vj

0 others

Definition 2.1. Failure infection: In nodes set V , ∀vi, vj ∈ V . If there is an edge e from
node vi to node vj, when a failure happens at node vj, it may be also infected to node vi,
and node vi fails too.

Definition 2.2. Critical node: According to cascading failures, if node vj fails, the nodes
which can arrive to node vj by one or more directed edges may also fail. Node vj is called
as critical node.

Definition 2.3. Critical nodes metrics (FID): When node vi fails, FID(i) is the propor-
tion of failure nodes numbers and total nodes numbers in the software network, as shown
in Formula (1).

FID(i) =
Vf (i)

V
(1)

Vf (i) represents the numbers of failure nodes which are caused by node vi in network. V
represents the numbers of total nodes in network. We regard FID as the metrics of critical
node measure in software execution network.

Definition 2.4. Level(i). Nodes are classified by FID values. The importance grade of
node vj is called as Level(i). When FID value is greater, then the Level is higher, and the
node is more important to the network. The nodes with the same FID value are at the
same level.



ICIC EXPRESS LETTERS, PART B: APPLICATIONS, VOL.7, NO.9, 2016 1881

3. Method of Critical Nodes Mining. The program execution sequence is extracted
to create the software execution directed network firstly, and then CNM algorithm is used
to calculate the node FID value which helps us to select the critical nodes. In the end,
we sort the nodes belonging to the FID value descending and take top-k nodes as critical
nodes.

3.1. Constructing software execution directed network. In order to accurately
measure the importance of nodes in software network, a model is proposed to construct the
software execution directed network under Linux environment. The process is described
as follows.

a. Using GNU compiler tool chain to collect the traces of function calls when software
executes, and put the results in trace.txt file.

b. Using Pvtrace to analyze trace.txt file and generate graph.dot file. In order to
describe clearly, Graphviz is used to display visualization of calls relationship between
functions.

c. Developing a tool which used java to realize development to convert graph.dot to
nodes.txt and edges.txt.

3.2. Critical node mining algorithm. CNM algorithm is used to measure the impor-
tance of nodes after software execution network generated. We traverse the nodes in depth
which can arrive to node vi by one or more directed edges, and accumulate the numbers.
The FID value of node vi is counted according to Formula (1), and sort in descending
order. Finally, we take top-k nodes as critical nodes from the results.

Algorithm 1 Critical Node Mining Algorithm
Input: G = ⟨V , E⟩
Output: FID[G.no], Top(k, Level)
(1) Link[G.no] = 0; Label[G.no] = false;
(2) Visited[G.no] = false; InitQueue(Q);
(3) for (i = 0; i ≤ G.no; i++){
(4) if (Label[i] = false){
(5) sum = 0;
(6) Label[i] = true;
(7) Visited[G.no] = false;
(8) if (Visited[i] = false) {
(9) Visited[i] = true;
(10) InQueue(Q,i);
(11) While (Queue empty(Q) != NULL){
(12) OutQueue(Q,i);
(13) for (j = DirectTo(G,i) → OtherDirectTo(G,i))
(14) if (Visited[j] = false){
(15) ++sum;
(16) Visited[j] = true;
(17) OutQueue(Q,j);

}
}

}
}

(18) Link[i] = sum;
}

(19) FID[G.no] = Link[G.no]/ G.no;
(20) Level (FID[G.no]);
(21) output (FID[G.no], Top(k, Level)).



1882 L. WANG, J. DONG AND J. REN

Queue structure is used to traverse the directed graph G in depth. When node vj

arrives to node vi by a path, sum++ (lines 3-17), and the number of nodes of the path
is counted. Then, we can calculate FID value of node vi according to Formula (1) (lines
18-19). Finally, we take top-k nodes as critical nodes which are sorted by FID value (lines
20-21).

4. Experimental Results and Analysis.

4.1. Datasets. To check the practical feasibility of our method, we use three software
datasets – a version of gzip, tar and cflow. The version numbers are gzip-1.6, tar-1.27 and
cflow-1.4. The numbers of functions and function calls relations of each software which
are tracked in software execution are shown in Table 1.

Table 1. The numbers of functions and call relations in each software

software datasets numbers of functions numbers of call relations
gzip-1.6 48 59
tar-1.27 101 121
cflow-1.4 116 194

4.2. Results and analysis. We can get the software execution directed network accord-
ing to the method mentioned in Section 3.1. Then, CNM algorithm is used to mine the
important functions of gzip, tar and cflow network graphs. In order to reflect the re-
sults more clearly, a comparative analysis is used among Indegree, NodeRank and CNM
algorithms.

Table 2. Top-5 levels of cflow software measured by CNM algorithm

Vf FID Function name
47 0.4052 deref linked list
46 0.3966 linked list append
36 0.3103 hash symbol hasher, hash symbol compare, symbol is function
31 0.2672 unlink symbol
30 0.2586 linked list destroy, static free, lookup, delete symbol

In cflow software, function deref linked list and linked list append are used to initialize
respectively. As shown in Table 2, function deref linked list is called by 47 functions
directly or indirectly; likewise, function linked list append is called by 46 functions in
cflow software execution process. If function deref linked list or linked list append fails,
it can lead to 40.52%, or 39.66% of the functions in network to break down respectively,
which causes software on the brink of collapse.

Table 3 shows the top-10 critical nodes of gzip software which is measured by Indegree,
NodeRank and CNM methods. In Indegree method, the nodes from no.2 to no.10 have
the same indegree value. It is not easy to distinguish the importance of each node. The
measurements between NodeRank and CNM methods are almost the same. In NodeRank
methods, function read buffer is considered as the most important node in the network.
However, the function read buffer can cause seven functions to fail. It is less than function
copy block. In CNM algorithm, if the function copy block has fault, the fault can be
transmitted to nine functions, such as ct init, gzip, treat file, main, gen codes, built tree,
flush block, built bl tree and deflate fast. So the value of FID(copy block) is 0.1875,
namely, if function copy block gets failure, 18.75% nodes in the network may be caused
to fail. Thus, CNM algorithm is better than Indegree and NodeRank methods.



ICIC EXPRESS LETTERS, PART B: APPLICATIONS, VOL.7, NO.9, 2016 1883

Table 3. Critical nodes ranking of gzip software using Indegree, NodeRank
and CNM methods

NO. Indegree NodeRank CNM
1 read buffer read buffer copy block
2 strlwr copy block gen codes
3 remove output file moddi3 read buffer
4 display ratio pqdownheap pqdownheap
5 gen codes bi reverse gen bitlen
6 copy block display ratio bi reverse
7 init block file read display ratio
8 file read ct tally scan tree
9 build tree write buf build tree
10 bi reverse scan tree init block

Table 4. Top-5 levels of tar software measured by CNM algorithm

Vf FID Function name
12 0.1176 checkpoint run, read header
11 0.1078 gnu flush read, represent uintmax
10 0.0980 gnu flush read, from header, assign string
9 0.0882 tar stat close, flush read
8 0.0784 flush archive

As shown in Table 4, FID of function read header is 0.1176 which could lead 12
functions to break down. The value of FID(tar stat close) is 0.0882, and the value of
FID(flush archive) is 0.0784, but the Indegree and NodeRank strategies cannot measure
the importance of function read header, tar stat close, as well as flush archive. Targeted
supports should be provided to these functions in software testing and maintenance; oth-
erwise, they may lead to software failure if these functions break down.

Take top-5 nodes of three software networks which are sorted by FID value. In order
to show software infection rates better, we gather statistics of Vf value and calculate
its average Vf , namely, if these functions are under attack, Vf/N × 100% of functions in
software network will be led to failure. The specific infection percentage of three softwares
is shown in Figure 1. Vf (cflow) = 34.66%, Vf (gzip) = 15.83%. Vf (tar) = 11.09%. It is
helpful to find the failure nodes as soon as possible, and improve software stability and
robustness in network.

Figure 1. Infection percentage

5. Conclusions. In order to predict the consequences if one or more nodes fail, we
measure the importance of nodes in the software execution network. This paper presents
a critical nodes mining (CNM) algorithm based on complex network. FID is defined to
identify the critical level of nodes, and the critical nodes are sorted by using FID values.



1884 L. WANG, J. DONG AND J. REN

Top-ranking nodes play important roles in the software network. Ultimately, experimental
analysis shows that CNM algorithm can accurately measure the importance of nodes and
predict their failure range. However, the results also show that there may be more than
one node in the same level. So how to distinguish from each other is one of the most
important researches in the future.

Acknowledgment. Project is supported by the Natural Science Foundation of Hebei
Province, P. R. China under Grant (No. F2014203152) and (No. F2015203326). The
authors also gratefully acknowledge the helpful comments and suggestions of the reviewers,
which have improved the presentation.

REFERENCES

[1] L. C. Freeman, Centrality in social network conceptual clarification, Social Network, vol.1, no.3,
pp.225-239, 1979.

[2] D. S. Callaway, M. E. J. Newman, S. H. Strogatez and D. J. Watts, Network robustness and fragility:
Percolation on random graphs, Physical Review Letters, vol.85, no.25, pp.5468-5471, 2000.

[3] X. F. Wang, Complex network: Topology, dynamics and synchronization, International Journal of
Bifurcation and Chaos, vol.12, no.5, pp.885-916, 2002.

[4] S. Xiao and G. Xiao, On intentional attacks and protections in complex communication networks,
Global Telecommunications Conference, pp.1-5, 2006.

[5] B. A. N. Travençolo and L. da F. Costa, Accessibility in complex networks, Physics Letters A,
vol.373, no.1, pp.89-95, 2008.

[6] M. Kitsak, L. K. Gallos, S. Havlin, F. Liljeros, L. Muchnik, H. E. Stanley and H. A. Makse, Identi-
fication of influential spreaders in complex network, Nature Physics., vol.6, no.11, pp.888-893, 2010.

[7] S. Gao and C. Li, Complex network model for software system and complexity measurement, 2009
World Congress on Computer Science and Information Engineering, pp.624-628, 2009.

[8] N. Masuda and H. Kori, Dynamics-based centrality for directed networks, Physical Review E, vol.82,
no.5, pp.514-539, 2010.

[9] P. Bhattacharya, M. Iliofotou, I. Neamtiu and M. Faloutsos, Graph-based analysis and prediction
for software evolution, Proc. of International Conference on Software Engineering, pp.419-429, 2012.

[10] D. Chen, H. Gao, L. Lü and T. Zhou, Identifying influential nodes in large-scale directed networks:
The role of clustering, Plos One, vol.8, no.10, 2013.

[11] L. Zhong, C. Gao, Z. Zhang, N. Shi and J. Huang, Identifying influential nodes in complex networks:
A multiple attributes fusion method, Lecture Notes in Computer Science, vol.8610, no.4, pp.11-22,
2014.

[12] B. Wei, J. Liu, D. Wei, C. Gao and Y. Deng, Weighted k-shell decomposition for complex networks
based on potential edge weights, Physica A: Statistical Mechanics & Its Applications, vol.420, pp.277-
283, 2015.


