
ICIC Express Letters
Part B: Applications ICIC International c⃝2016 ISSN 2185-2766
Volume 7, Number 9, September 2016 pp. 1863–1869

A TIME-EFFICIENT ALGORITHM OF TASK OFFLOADING
FOR COMPUTATION-INTENSIVE APPLICATIONS

IN MOBILE CLOUD COMPUTING

Ling Li1, Haiyan Tang1, Xiuhua Yang2, Dianshu Chen1 and Xiaoming Tao1

1College of Communication Engineering
2Network Center of Jilin University

Jilin University
No. 5372, Nanhu Road, Nanhu Campus of Jilin Univeisity, Changchun 130012, P. R. China

{ liling2002; yangxh }@jlu.edu.cn; tanghy14@mails.jlu.edu.cn
{ chendianshu16; taoxiaoming2016 }@sina.com

Received February 2016; accepted May 2016

Abstract. Recent studies suggest that offloading some components of a computation-
intensive application from a mobile device to the cloud for execution is a feasible ap-
proach to alleviate the burden of the mobile device. So, a challenging job is to determine
which components should be offloaded. In this paper, aiming at minimizing the total ap-
plication execution time, the Time-efficient Algorithm (TE Algorithm) is proposed. A
dynamic programming is adopted firstly, and then computation-intensive tasks are given
a priority to be offloaded. Simulation results prove that the Time-efficient Algorithm
outperforms the existing optimal solution.
Keywords: Mobile cloud computing, Offloading decision, Time-efficient Algorithm, Dy-
namic programming, Computation-intensive task cluster, Preorder task

1. Introduction. Nowadays, computation-intensive applications have emerged. How-
ever, the processing power of mobile devices is limited [1,2]. One solution is offloading
these applications to the cloud for execution [1-4]. The powerful computation capacity
of the cloud can eliminate the running time of a mobile application and save energy for
the device battery [5-7]. Recently, scholars have been studying on offloading only some
parts of the applications [8-10]. In [11], a real-time decision making algorithm suggested
fine-grained code offloading. In [12], a code partition algorithm explored the offloading
decision on a sequence of calls by a linear time searching scheme. However, these algo-
rithms only aimed at simple tasks, so they could not cover all scenarios. In [13], Jia et al.
transformed all the tasks into a general task graph and studied on both sequential tasks
and concurrent tasks. However, there was no consideration of reducing the communication
cost in his work.

Our main contributions in this paper are as follows. We propose the TE Algorithm
for the offloading problems in mobile cloud clouding, and optimally solve the problem of
minimizing the total execution time of a mobile application. A dynamic programming
algorithm is adopted firstly to look for the boundary offloading tasks from a macroscopic
view. In addition, the internal structures of all the complex tasks are studied from a
microscopic view. One prominent characteristic of this work is real time adaptability, as
the offloading decision is made while the application is at running time. Besides, exploring
both simple tasks and complex tasks is a novel idea which is superior to all the previous
works, since it covers all aspects of the offloading problems.

The rest of this paper is organized as follows. In Section 2, model formulation of the
TE Algorithm is demonstrated. In Section 3, the TE Algorithm is described in detail. In

1863



1864 L. LI, H. TANG, X. YANG, D. CHEN AND X. TAO

succession, the TE Algorithm is compared with an existing relatively optimal algorithm
in Section 4. Conclusions are drawn in Section 5.

2. Model Formulation. For a given mobile application, it is composed of multiple tasks
which are executed in time sequence. A task diagram is formed by abstracting each task
as a vertex and adopting directed edges to denote the calling relationships. At some
moments, there may be only one task being executed, which is described as a simple
vertex in a diagram. Whereas, for a cluster of tasks executed simultaneously at a certain
time, each cluster can be depicted into a complex vertex.

From a macroscopic view, as Figure 1 shows, a diagram can be converted into a linear
structure by expressing both the simple task and the complex task as an ‘entity task’,
where the empty vertices stand for simple tasks, and the filled vertices stand for complex
tasks.

From a microscopic view, all complex tasks contain a few simple tasks inside. Figure 2
illustrates an example of the internal structure of a complex task.

250,80 50,20 160,40 800,200 25,8 190,60 50,2035,8 500,90

9 4 6 8 30 15 5 16

(6) (1) (5) (2) (8) (6) (2) (8) (7)
 

Figure 1. Linear structure of a task diagram

400,250 70,1590,25

50,10
80,30

150,60

300,80260,100

400,90

300,120

8

60,20

60,20 800,200 160,50

180,60

60,20

450,120

75,30

280,55

15

4 8 30

5

17

(2)

16 18

13

21 7
6

6

6 30
16

17

20

51

15

28

(5)

(2) (3) (8) (1)

(4)

(5) (5) (3)

(8) (2)

(2) (5)

(2) (5) (4)

(1)

(3)

4 11

 

Figure 2. Internal structure of a complex task

In a diagram, each task possesses two numerical values: tm and tc.

tmi =
wi

pm
(1)

tci =
wi

pc
(2)

where tmi and tci represent the execution time of taski on the device and on the cloud
respectively, pm and pc stand for the computing power of the mobile device and the cloud
respectively, and wi indicates the average number of instructions of taski.

Assuming taski and taski+1 are two consecutive tasks, and they are executed at different
places, thus the data transmission time cost between them can be denoted as:

ti,i+1 =
hi,i+1

V
(3)



ICIC EXPRESS LETTERS, PART B: APPLICATIONS, VOL.7, NO.9, 2016 1865

where hi,i+1 is the size of data transferring from taski to taski+1, and V stands for the
data rate of the wireless communication between the mobile device and the cloud.

If taski is offloaded, the cost of transferring its program code is:

Tcodei =
Size(codei)

V
(4)

where Size(codei) is the size of program code of taski.
In a diagram, the numerical value on each directed edge between two tasks is the time

cost of data transferring. The two values marked above each task stand for the tm and
tc for this task, respectively. The values in brackets under each task are the time cost of
transferring the program code of this task.

3. Time-efficient Algorithm (TE Algorithm). In this Section, the Time-efficient
Algorithm (TE Algorithm) is introduced. Firstly, a dynamic programming algorithm is
proposed to find the optimal StartingTask and EndingTask in a linear diagram macro-
scopically. Then, internal structures of all the complex tasks are further analyzed.

3.1. Macroscopic offloading decision-making. Existing studies have verified that the
transmission cost during application offloading includes two parts: 1) the cost caused by
transferring data between two contiguous tasks [9,14]; 2) the transferring cost by migrating
the program code of each task. On a linear task diagram, the optimal remote segments
must be a series of consecutive tasks without discontinuity and there is only one optimal
pair of StartingTask and EndingTask. For example, in Figure 3, it is better to offload
task4 together with task2, task3, task5 and task6 than execute task4 locally.

Figure 4 shows a linear diagram that contains K consecutive tasks. We propose a
dynamic programming algorithm to find the optimal StartingTask and EndingTask pair,
in which all the tasks in the diagram are traversed in order.

Figure 3. Linear structure of a task diagram

Figure 4. Internal structure of a complex task

The offloading decision on taski is made according to the following step.
Assume that the offloading decisions have already been made on the first (i − 1) tasks

in the diagram, and the current offloading cluster contains n consecutive tasks which have
been decided to be offloaded right before taski. Then, the judging criterion on taski is
shown as Formula (5).

TSi =


TSi−1 + inTi + tmi − tci − Tcodei,

if (TSi−1 + inTi + tmi − tci) > (tmi − tci − inTi)
tmi − tci − inTi − outTi − Tcodei,

otherwise

(2 ≤ i ≤ K) (5)

where TSi−1 and TSi denote the current Time Saving after offloading decisions have
already been made on taski−1 and taski, respectively, and inTi and outTi represent the
Time Cost of transferring the input data and output data for taski, respectively.



1866 L. LI, H. TANG, X. YANG, D. CHEN AND X. TAO

In Formula (5), (TSi−1 + inTi +tmi−tci−Tcodei) stands for the Time Saving if taski is
decided to be added into the current offloading cluster, (tmi− tci− inTi−outTi−Tcodei)
is the Time Saving if taski is taken to be the new StartingTask. The offloading decision
on taski is made in the circumstance that saves more time. In other words, if the first
condition in Formula (5) holds, the offloading decision will be adding taski into the current
offloading cluster. Otherwise, abandon the current offloading cluster and take taski to
be the new StartingTask, and thus a new offloading cluster will be produced. Moreover,
TSi is assigned to values according to the more time-saving condition. After that, the
offloading decision will be made on taski+1 in this linear diagram in the same way.

Initial values have to be set before the proposed dynamic programming is performed:

TS1 = tm1 − tc1 − inT1 − outT1 − Tcode1 (6)

Each task is corresponded with a unique Time Saving after the offloading decision has
been made on it. After all the tasks have been judged, there will be a certain TSi with
the biggest Time Saving. Then assign the value of the biggest TSi to T max:

T max = (TSi)max (7)

where T max represents the most Time Saving under a specific circumstance, and the
StartingTask and EndingTask pair which corresponds with T max is the optimal pair.
That is to say, the optimal offloading decision is to offload all the tasks between the
StartingTask and the EndingTask .

Figure 5 shows an inner structure of a complex task. It is worth mentioning that if the
macroscopic offloading decision on a complex task (such as the complex task in Figure 5)
is to execute it locally, that means its enter task and exit task (task1 and task11) will be
executed locally; otherwise, its enter task and exit task will be offloaded to the cloud.

Figure 5. Complex task decision-making

3.2. Microscopic offloading decision-making. A cluster of consecutive tasks without
discontinuity between the StartingTask and the EndingTask has been found in a linear
diagram. Then, all the complex tasks are analyzed for further precise decision.

i) Questing for computation-intensive task cluster
A threshold value needs to be set as X, which denotes a dividing point of remote

and local segments. For a mobile application, each task corresponds with a ‘tm’, which
represents its execution time on the device. We define the tasks whose tm is larger than
X as computation-intensive tasks, which are given priorities to be offloaded.

In Figure 5, task2, task4, task9 and task10 are defined to be computation-intensive
tasks . Previous works have proved that tasks tend to be offloaded in clusters. Briefly, if
a task is offloaded, it is likely that its adjacent tasks are also offloaded. This observation
also applies to complex tasks, so all the other tasks that are situated on the connecting
lines of these computation-intensive tasks are also selected to join the offloading cluster.
Therefore, task6 and task7 are also selected to be offloaded, and a computation-intensive
task cluster (including task4, task6, task7, task9 and task10) is produced.

ii) Judging on preorder tasks
For a computation-intensive cluster, there will be further decisions making on its pre-

order tasks.



ICIC EXPRESS LETTERS, PART B: APPLICATIONS, VOL.7, NO.9, 2016 1867

Figure 6. DAGs

Assuming that the complex task in Figure 5 has been decided to be offloaded to the
cloud for execution in Section 3.1, task3 is the preorder task of the computation-intensive
cluster, and the preorder task of task3 is task1. In this case, the decision on task3 is made
as the following criterion shows:

tm3 + inT3 + outT3 − tc3 − Tcode3 > 0 (8)

If Formula (8) holds, task3 will be offloaded to the cloud, because executing task3

remotely will save more time than executing it locally. Otherwise, task3 will be executed
on the mobile device.

In fact, the complex task in Figure 5 may have been decided to be executed locally in
Section 3.1. That is, the preorder task of task3 is executed on the device. Assuming that
taski (such as task3 in Figure 5) is the preorder task of a computation-intensive cluster,
and the preorder task of taski as taskf , then the general decision on taski will be:

a) If taskf has been decided to be offloaded in Section 3.1, the decision will be:{
Offloading taski, if (tmi + inTi + outTi − tci − Tcodei) > 0
Executing taski locally, otherwise

(9)

b) If taskf has been decided to be executed locally in Section 3.1, the decision will be:{
Offloading taski, if (tmi − inTi + outTi − tci − Tcodei) > 0
Executing taski locally, otherwise

(10)

4. Simulation. In this section, the performance of the TE Algorithm is implemented in
Java on MyEclipse 2013 on a dual core Intel Celeron 2.8GHz processor, 4G RAM laptop.
The TE Algorithm is compared with two other scenarios: 1) Executing all the tasks
locally; 2) Mike Jia’s work in [13], which is considered as a relatively optimal algorithm.

We implemented the TE Algorithm on 50 different DAGs (Directed Acyclic Graph).
The weights of all the vertices and edges were stochastically valued from a uniform distri-
bution. In detail, the values of wi were randomly sampled from 150 to 2400. In addition,
the processing capacities of the mobile device and the cloud were fixed to pm = 3 (in-
structions per millisecond) and pc = 15 respectively. Consequently, according to Formula
(1), the values of tmi range from 50ms to 800ms. As the computation-intensive tasks
tended to be time consuming on mobile devices, the threshold value was set to X = 100
ms. That is to say, in Section 3.2, we defined all the simple tasks of which tmi were larger
than 100ms as computation-intensive tasks in our experiment. The network bandwidth
was considered as a variable and it varied from 0.1 to 2 for observation. For simplicity,
we randomly selected four DAGs (as shown in Figure 6) to present in the paper.

From Figure 7, it can be apparently found that executing the entire application lo-
cally turned out to be the most time consuming of all the scenarios. Moreover, the TE
Algorithm outperformed Mike Jia’s algorithm on the whole. 1) In TE Algorithm, the
computing capacity of the mobile device was weighed firstly and a threshold value was set
as the boundary standard of distinguishing whether a task was supposed to be offloaded.
These approaches not only enhanced execution effects with the aid of the cloud’s strong



1868 L. LI, H. TANG, X. YANG, D. CHEN AND X. TAO

(a) (b)

(c) (d)

Figure 7. Simulation results

computing power, but also avoided resources waste caused by device idle. 2) In TE Al-
gorithm, searching for computation-intensive task clusters and judging on the preorder
tasks contributed to a lower-level communication cost when transferring data. 3) For
concurrent tasks, Mike Jia’s load-balancing scheme did not have attempts to decrease the
data transmission time.

5. Conclusions. In this paper, the Time-efficient Algorithm is proposed to minimize the
total execution time for computation intensive applications in mobile cloud computing.
A dynamic programming algorithm is firstly conducted to determine the optimal Start-
ingTask and EndingTask in a linear task diagram. Then, computation-intensive tasks are
given priorities to be offloaded and the preorder tasks are judged. Evaluation has shown
that the Time-efficient Algorithm outperforms the approximately optimal algorithm in
[13]. In this case, Time-efficient Algorithm can be applied to mobile applications, which
is bound to lessen battery energy. For future direction, we will explore the effectiveness
of TE Algorithm in terms of energy saving, which provides far-reaching significance on
extending battery life.

Acknowledgment. This work is partially supported by foundation project for Science
and Technology Department of Jilin Province (Grant No. 20150204008GX) and foundation
project for the Education Department of Jilin Province (Grant No. 2014B006). The
authors also gratefully acknowledge the helpful comments and suggestions of the reviewers,
which have improved the presentation.

REFERENCES

[1] N. Fernando, S. W. Loke and W. Rahayu, Mobile cloud computing: A survey, Future Generation
Computer Systems – The International Journal of Grid Computing and Escience, vol.29, pp.84-106,
2013.



ICIC EXPRESS LETTERS, PART B: APPLICATIONS, VOL.7, NO.9, 2016 1869

[2] O. S. Mao, Y. Kun and L. Antonio, Performance analysis of offloading systems in mobile wireless
environments, IEEE International Conference on Communications, Glasgow, Scotland, pp.1821-
1826, 2007.

[3] G. Mohanarajah and D. Hunziker, Rapyuta: A cloud robotics platform, IEEE Trans. Automation
Science and Engineering, vol.12, pp.481-493, 2015.

[4] M. Satyanarayanan, P. Bahl and R. Caceres, The case for VM-based cloudlets in mobile computing,
IEEE Pervasive Computing, vol.8, pp.14-23, 2009.

[5] C. A. Ardagna and C. Mauro, An anonymous end-to-end communication protocol for mobile cloud
environments, IEEE Trans. Services Computing, vol.7, pp.373-386, 2014.

[6] M. Choi and J. Park, Mobile cloud computing framework for pervasive and ubiquitous environment,
Journal of Supercomputing, vol.64, pp.331-356, 2013.

[7] D. S. Guang, H. L. Tao and T. Javid, Computation offloading for service workflow in mobile cloud
computing, IEEE Trans. Parallel and Distributed Systems, vol.26, pp.3317-3329, 2015.

[8] B. G. Chun and P. Maniatis, Dynamically partitioning applications between weak devices and clouds,
Proc. of the 1st ACM Workshop on Mobile Cloud Computing and Services: Social Networks and
Beyond, no.7, pp.27-34, 2010.

[9] Z. Yang, N. Dusit and W. Ping, Offloading in mobile cloudlet systems with intermittent connectivity,
IEEE Trans. Mobile Computing, vol.14, pp.2516-2529, 2015.

[10] M. Shiraz and A. Gani, A lightweight active service migration framework for computational offloading
in mobile cloud computing, Journal of Supercomputing, vol.68, pp.978-995, 2014.

[11] E. Cuervoy, A. Balasubramanian and D.-K. Cho, MAUI: Making Smartphones last longer with code
offload, Proc. of the 8th International Conference on Mobile Systems, Applications, and Services,
New York, pp.49-62, 2010.

[12] Y. Zhang, H. Liu, L. Jiao and X. Fu, To offload or not to offload: An efficient code partition algorithm
for mobile cloud computing, IEEE the 1st International Conference on Cloud Networking, 2012.

[13] M. Jia, J. Cao and L. Yang, Heuristic offloading of concurrent tasks for computation-intensive
applications in mobile cloud computing, IEEE Conference on Computer Communications, Toronto,
pp.352-357, 2014.

[14] L. Bo, P. Y. Jian and W. Hao, Heuristics to allocate high-performance cloudlets for computation
offloading in mobile ad hoc clouds, Journal of Supercomputing, vol.71, pp.3009-3036, 2015.


