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Abstract. Production-inventory cooperation model with one buyer and one vendor is
studied. If the buyer places an order with lots of products, then the vendor begins to pro-
duce the products and these will be transferred to the buyer with unequal-sized shipments
many times. Actually, shipping batch size is increased with fixed factor and space re-
strictions for vendor and buyer are considered. Demand follows normal distribution and
the continuous review inventory policy is used to the buyer. A Lagrangian relaxation ap-
proach is developed to find lower bound of this problem and the solution method based on
the Lagrangian relaxation approach is proposed. Sensitivity analysis is done to figure out
the relationships between space restriction and decision variables such as order quantity,
safety factor, the number of shipments, and fixed factor for shipping batch size increase.
Keywords: Continuous review inventory system, Increasing shipping batch, Space re-
striction, Supply chain management

1. Introduction. The cooperation among companies of the various cost reduction activ-
ities is more and more important in supply chain. In this research, an integrated inventory
strategy through the cooperation between a vendor and a buyer is studied. To consider
realistic situation, we include space limit for vendor and buyer.

There are some researches on continuous review inventory model. Tamjidzad and Mir-
mohammadi [11] develop the optimal solution algorithm for continuous review inventory
problem with quantity discount and limited sharable resource. The problem is broken
down into sub-problems and each sub-problem is solved optimally. Alfares and Ghaithan
[1] define the inventory model with the variable demand rate, holding cost, and purchase
cost. They prove that their objective function is concave and develop the optimal solution
algorithm. Ghalebsaz-Jeddi et al. [3], Wang and Hu [8,9], and Zhao et al. [10] propose
the solution method for multi-item continuous review inventory with space limit. Hariga
[6] studies that a buyer uses continuous review inventory policy and his storage space is
limited. If the inventory is over storage capacity, then the buyer returns the inventory
over space capacity to the buyer and pays extra charges to the vendor.

On the other hand, production-inventory cooperation model with one buyer and one
vendor is studied in some researches. Goyal [5] deals with this problem and presents a
solution method for minimizing inventory cost if customer’s demand is deterministic and
the sizes of shipping batches are equal. Hill [7] provides the optimal solution approach
if customer’s demand is deterministic and the sizes of shipping batches are increasing
with a fixed factor. Ben-Daya and Hariga [2] suggest a solution approach if demand is
stochastic and the sizes of shipping batches are equal. Glock [4] presents the optimal
solution approach if customer’s demand is probabilistic and the sizes of shipping batches
are increasing with a fixed factor.
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Space restriction is not considered in these researches. In real situation, space restriction
is required for inventory model because the size of warehouse is limited. In this paper,
production-inventory cooperation model with stochastic demand and increasing shipping
batch size is studied. Space restriction is considered and the space limit constraint is
defined in mathematical formulation. A Lagrangian relaxation approach is developed to
minimize total cost.

This paper is organized as follows. Section 2 provides problem definition and math-
ematical formulation. In Section 3, the first order necessary condition and the solution
method based Lagrangian relaxation method is proposed. In Section 4, numerical exam-
ple is illustrated and sensitivity analysis is conducted to reveal the relationship between
the space limit and decision variables. Finally, in Section 5, the conclusion is presented.

2. Problem Definition. Buyer’s demand is stochastic and follows normal distribution.
Vendor uses a continuous inventory review (Q, r) policy. If shipping bathes increase with a
fixed factor α (≥ 1), then the size of shipping batch in the jth shipment will be qj = q1α

j−1

where q1 is the first shipping batch size. Lead time is proportional to vendor’s lot size
plus a fixed delayed time (b) such as transportation and non-production time. Therefore,
lead time will be LT (qj) = pqj + b. Buyer places the number of

∑n
j=1 qj of the item, and

vendor manufacture
∑n

j=1 qj of that item with annual production rate 1/p. Since buyer

uses (Q, r) inventory policy, the buyer receives n number of shipments from vendor and
the size of shipping batch is qj in the jth shipment. The buyer orders again if his on hand
inventory level hits a reorder point r, right after getting the nth shipment.

Notations and variables in this problem are defined as follows.
Wv: maximum allowable vendor’s inventory level
Wb: maximum allowable buyer’s inventory level
Z: random variable for standard normal distribution, N(0, 1)
X: random variable during lead time demand, X ∼ N (µ, σ2)
L(r): expected shortage demand for reorder point r, L(r) =

∫∞
r

(x − r)f(x)dx
f(x): probability density function (p.d.f) for random variable X
π: shortage cost per item for buyer
hv: inventory holding cost per item for vendor
hb: inventory holding cost per item for buyer
Av: setup cost for vendor per order
Ab: setup cost for buyer per order
F : transportation cost for buyer per shipment
D: annual demand
Decision Variables. q1: size of the first shipment from the vendor to the buyer; z1:

safety factor for the buyer in the first shipment; n: number of shipments; α: fixed factor
for shipping batch increase.

We can formulate this problem (P) in the following.

P : Min TC(q1, z1, n, α)

=
q1

2


(

2Dp + (1 − Dp)
n∑

i=1

αi−1

)
hv +


n∑

i=1

α2i−2

n∑
j=1

αj−1

 (hb − hv)


+z1σ

√
pq1 + bhb +

[
(Ab + Av + nF )

+nσ

n∑
i=1

√
pq1αi−1 + bL(zi)

]
D

q1

n∑
i=1

αi−1

(1)
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subject to

q1α
n−1 + z1σ

√
pq1 + b ≤ Wb (2)

q1α
n−1 ≤ Wv (3)

q1, z1 ≥ 0 (4)

n ∈ N (5)

(1) represents the objective function that minimizes total cost of vendor and buyer. (2)
ensures that buyer’s maximum inventory level cannot exceed maximum allowable inven-
tory level (Wb). Since the last shipment q1α

n−1 is the largest shipment for the buyer,
buyer’s maximum inventory level can be represented by the sum of the last shipment and
safety stock, q1α

n−1 + z1σ
√

pq1 + b. By the same token, (3) ensures that vendor’s least
maximum inventory level, q1α

n−1, cannot exceed Wv. Vendor’s maximum inventory level
is not easily obtained, and vendor’s maximum inventory level is at least larger than the
size of the last shipment, q1α

n−1. We use vendor’s least maximum inventory level, q1α
n−1.

(4) defines decision variables q1, z1 are positive real numbers and (5) defines the decision
variable n is a positive integer.

3. The Proposed Method. Lagrangian relaxation problem for primal problem (P) is
defined, and the first order necessary condition is introduced.

3.1. Lagrangian relaxation and the first order necessary condition. We relax
space restriction constraints for vendor and buyer (2), (3) and use associated Lagrange
multipliers λv, λb to formulate Lagrangian dual problem:

LD : Maxλv,λb
MinL

= TC(q1, z1, n, α) − λv

(
Wv − q1α

n−1
)
− λb

(
Wb − q1α

n−1 − z1σ
√

pq1 + b
)

Subject to (4)

n is relaxed to be nonnegative real number. The optimal solution of LD, Maxλv ,λb
is

the greatest lower bound of P. Given that λv, λb are determined, the Lagrangian relaxed
problem (LR) is shown by

LR : Min L =
q1

2


(

2Dp + (1 − Dp)
n∑

i=1

αi−1

)
hv +


n∑

i=1

α2i−2

n∑
i=1

αi−1

 (hb − hv)


+z1σ

√
pq1 + bhb

+

[
(Ab + Av + nF ) + πσ

n∑
i=1

√
pq1αi−1 + bL(zi)

]
D

q1

n∑
i=1

αi−1

+λv

(
q1α

n−1 − Wv

)
+ λb

(
q1α

n−1 + z1σ
√

pq1 + b − Wb

)
(6)

Subject to (4)

Differentiating (6) with respect to q1, z1, λv, λb, and set those to 0, then we can obtain
the first order necessary conditions for LR as follows:

q1 =

√
QN

QD

(7)
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where, QN = 2D
[
(Ab + Av + nF ) + πσ

∑n
i=1

√
pq1αi−1 + bL(zi)

]
, QD =

∑n
i=1 αi−1

[
C+

pσz1√
pq1+b

(hb + λb) + πσ
∑n

i=1

(
Dpαi−1L(zi)

q1
∑n

i=1 αi−1
√

pq1αi−1+b

)
+ 2αn−1(λv + λb)

]
, and C =

[
(2Dp+

(1 − Dp)
∑n

i=1 αi−1) hv +
(∑n

i=1 α2i−2∑n
i=1 αi−1

)
(hb − hv)

]
.

q1(hb + λb)

πD
=

1∑n
i=1 αi−1

∑n

i=1

√
pq1αi−1 + b

pq1 + b
(1 − F (zi)) (8)

∂L

∂λv

= q1α
n−1 − Wv = 0 (9)

∂L

∂λb

= q1α
n−1 + z1σ

√
pq1 + b − Wb = 0 (10)

Note that the first necessary condition for decision variable n is not considered. n is a
positive integer and n will be found by total enumeration in the next section.

3.2. Solution methodology. Since Equations (7) and (8) are influenced by λv, λb,
constraints (2) and (3) can be represented by functions of λv, λb as follows:

gv(λv) = q1α
n−1 − Wv (11)

gb(λb) = q1α
n−1 + z1σ

√
pq1 + b − Wb (12)

If gv, gb ≤ 0, then constraints (2) and (3) are not violated.
For given λv, λb, the procedure for LR is to find q1, zi that satisfy both of (7) and (8)

while increasing n by 1. Then, search α to minimize L. Repeat this until the objective
value L is not decreased. The proposed method for LR is listed in the following.

Algorithm A. The algorithm for getting q1, zi, n, α, the solution of Problem (LR)
Step 1. For given λv, λb, set L(zi) = 0, n = 1.
Step 2. Set α = 1.
Step 3. Repeat a) and b) until q1 and zi converge.

a) Get q1 by inserting zi into (7).
b) Get zi by inserting q1 into (8).

Step 4. Update α by golden section search. If α does not change, then go to Step 5.
Otherwise, return to Step 3. Note that maximum value of α is pD.

Step 5. If TC decreases, then set n = n + 1 and return to Step 2. Otherwise, stop.
Solutions for Problem LR may be infeasible solutions for Problem P. To make those

feasible, we need to find q1 such that satisfy constraints (2) and (3) at the same time.
First, find Qv satisfying gv(λv) = 0, and Qb satisfying gb(λb) = 0. Then, we can choose
minimum between Qv and Qb so that both constraints are satisfied.

If gv(λv) = 0, then q1α
n−1 = Wv. Therefore, Qv = Wv

αn−1 . If gb(λb) = 0, then q1α
n−1 +

z1σ
√

pq1 + b = Wb. Therefore, Qb = Wb−zqσ
√

pq1+b

αn−1 . Solve iteratively until Qb converges.
Heuristics to generate a feasible solution by adjusting q1 is presented as follows.
Algorithm B. The algorithm for constructing a feasible solution
Step 1. Recall an infeasible solution.
Step 2. If gv(λv) < 0, then constraint (5) is satisfied and set Qv = q1. Otherwise, get

Qv = Wv

αn−1 .
Step 3. If gb(λb) < 0, then constraint (6) is satisfied and set Qb = q1. Otherwise, get

Qb = Wb−z1σ
√

pq1+b
αn−1 .

Step 4. Set Q∗ = min[Qv, Qb].
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The subgradient method is applied to searching optimal λv and λb. The subgradient of
d and step size s can be computed as follows:

d = |gv(λv)| + |gb(λb)|, s = Q
TC∗ − LB

d2

where TC∗ is the total cost calculated by (4) and the best known feasible solution to (P),
and LB is lower bound calculated by (10), and θ is a scalar selected from 0 to 2.

4. Numerical Example and Result. To illustrate the performance of the proposed
method and sensitivity analysis for space limit of vendor and buyer, the numerical example
proposed by Glock [4] is used in Table 1. Sensitivity analysis only for some parameters
such as F , b, hb is done in [4] because space limit is not considered. In this chapter,
sensitivity analysis for space limit is done.

As Wb, Wv are decreased from 430 to 150, 410 to 135 by 20, respectively, the trend of
decision variables α, q1, z1, n are shown in Figure 1. Transportation cost for buyer per
shipment (F ) is assumed to be $15, $25, and $35. In all cases, optimal solutions are found
because TC is equal to LB. As space limit is decreased, TC is naturally increased.

The results are summarized as follows.
As Wv and Wb are decreased,

• α is also decreased in all cases because α decides increase rate of shipping batch size.
Decrease rate is high in F = 35. If transportation cost is high, the shipping batch
size is large to reduce the number of shipment.

Table 1. Data for numerical example

Notation Value Notation Value
D 1000 Av $400
p 1/3200 Ab $50
σ 5 hv $4
F $25 hb $5
π $100 b 0.01

Table 2. The values of α, q1, z1, n, TC if Wb is equal to 350 and Wv is
changed from 335 to 55 by 20

Wv α q1 z1 n TC LB
335 2.11 34.10 4.81 4 1922.37 1922.37
315 2.11 33.62 4.82 4 1922.53 1922.53
295 2.11 31.49 4.77 4 1928.20 1928.20
275 1.98 35.50 4.51 4 1932.93 1932.93
255 1.81 43.06 4.16 4 1936.26 1936.26
235 1.67 30.11 4.37 5 1941.25 1941.25
215 1.54 38.03 4.00 5 1943.40 1943.40
195 1.42 47.48 3.65 5 1948.11 1948.11
175 1.31 59.05 3.31 5 1955.66 1955.66
155 1.25 50.47 3.33 6 1968.77 1968.77
135 1.16 62.98 3.02 6 1979.85 1979.85
115 1.08 78.07 2.75 6 1995.63 1995.63
95 1.00 92.79 2.55 6 2017.07 2016.94
75 1.00 72.36 2.62 8 2056.93 2053.04
55 1.00 53.97 2.68 10 2141.39 2140.32
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(a) Sensitivity results of α (b) Sensitivity results of q1

(c) Sensitivity results of z1 (d) Sensitivity results of n

(e) Sensitivity results of TC

Figure 1. Sensitivity analysis for α, q1, z1, n, TC if Wb and Wv are
changed from 430 to 150 and from 415 to 135 by 20

• n is increased, but z1 is decreased. When space limit is low, the batch size is small
and the frequency of shipment is high. Furthermore, z1 is small so that safety stock
level is low.
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• q1 is increased. To understand this, the relationship among α, q1, z1, n should be
analyzed. The trend of q1 is increased, but q1 sometimes drops at the moment that
n rises. For example, q1 drops at data 5 and 12 for F = 35, n rises from 3 to 4, and
from 4 to 5 at this moment. Even though q1 is increased, α is decreased and the
final shipping batch (nth batch) size is consistently decreased.

The result of other sensitivity analysis is shown in Table 2 when Wv is decreased from
335 to 55 by 20 and Wb is equal to 350. As Wv is decreased and Wb = 350,

• the results are similar to those of the previous sensitivity analysis.
• the optimal solution is not found for Wv = 95, 75, and 55 because TC are different

from LB. α is equal to 1 and the size of shipping batch is unchanged. Space limit
for vendor (Wv) is so small that the size of shipping batch cannot be increased.

5. Conclusion. Production-inventory cooperation model with one buyer and one vendor
under space limit is studied in this research. We define the constraints for these space
limits, and develop the solution method based on Lagrangian relaxation. Moreover, sen-
sitivity analysis for these space limit is conducted to find out the relationship between
space limit and decision variables such as α, q1, z1, n. Some realistic constraints such as
quantity discount and other resource limits can be added in this model, and the procedure
for this problem is required to be developed.
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