
ICIC Express Letters
Part B: Applications ICIC International c©2016 ISSN 2185-2766
Volume 7, Number 8, August 2016 pp. 1783–1789

A FIRE SIMULATION SYSTEM FOR VIRTUAL SAFETY TRAINING

Guijuan Zhang1,2, Lei Lv2, Daying Lu2, Yongjian Wang3

Dianjie Lu2 and Xiangxu Meng1

1School of Computer Science and Technology
Shandong University

No. 27, Shanda Nanlu, Jinan 250100, P. R. China
guijuanzhang@gmail.com

2School of Information Science and Engineering
Shandong Normal University

No. 88, Wenhua East Road, Lixia District, Jinan 250014, P. R. China

3Institute of Computing Technology
Chinese Academy of Sciences

No. 6, Kexueyuan South Road, Zhongguancun, Haidian District, Beijing 100190, P. R. China

Received January 2016; accepted April 2016

Abstract. We present a fire simulation system for virtual safety training in this paper.
Our method allows users to have realistic experience when learning emergency skills in
fires without exposing them to the hazard. To do this, we use Fire Dynamic Simulator
(FDS) in fire research area to compute physically and mathematically accurate fire sim-
ulation data which makes the training more effective. In addition, we use photo-realistic
rendering method in computer graphics area to produce visual pleasing fire simulation
results. The method enhances the visualization of FDS data significantly. We implement
the rendering algorithm on Graphics Processing Unit (GPU) so that our system can run
in real-time. Results show that our system can improve the experience of virtual train-
ing and the effectiveness of escape-skills learning significantly via providing accurate and
realistic fire simulation results.
Keywords: Fire simulation, Virtual safety training, Fire dynamic simulator, Photo-
realistic rendering

1. Introduction. Fire emergency often happens in our daily life and many people are
injured, and even worse, lost their lives in the fires every year. As one of the most common
emergencies, fire is very harmful if not dealt properly. Therefore, training people with
the escape and self-protection skills is essential to protect personal and public property
safety in fires.

However, the fires-escape training in a real-world scenario is impractical because of the
high cost and unsafe factors. Virtual safety training which benefits from virtual reality
technology can address the above problems. It provides realistic experience that allows
trainee to learn the skills in dangerous situation without exposing them to the hazard.

Provided an available way for skills training in fires, virtual fire training requires sim-
ulating fire phenomenon with high degree of realism. In fire simulation world, FDS [1] is
one of the most famous softwares developed by the National Institute of Standards and
Technology (NIST). To visualize the numerical data, VTT Technical Research Center
of Finland releases a software, a fire dynamics simulator with evocation (FDS+Evac) to
simulate human egress using the evacuation module that is fully embedded in FDS [2].
Many commercial systems (e.g., Myriad, Legion, EXODUS, EGRESS, Vegas, Simulex and
EVACNET) also appear in building fire simulation [3]. However, the simple visualization
method in fire simulation area cannot achieve realistic results for fire training. More pro-
fessional fire visualization methods are proposed in computer graphics area [4, 5, 6, 7, 8].

1783



1784 G. ZHANG, L. LV, D. LU, Y. WANG, D. LU AND X. MENG

Unfortunately, most of the fire data in these methods are synthesized rather than physi-
cally accurate. Thus, it is impractical to be applied to virtual safety training.

In this paper, we present a simulation system for fire safety training. The system
provides realistic experience for trainee when learning emergency skills. We adopt FDS
to compute the fire physical model and render the fire numerical model with photo-realistic
rendering method. The rest of the paper is organized as follows. Section 2 describes the
method of this paper. Section 3 discusses the results and we conclude this paper in Section
4.

2. Method.

2.1. Pre-processing. In FDS, environment is represented as a set of blocks. Given 3D
environment model, we get the voxels of the model by a voxelization method [9, 10] and
combine them along three axes X, Y and Z so as to obtain blocks for computation input.

2.1.1. Voxelization. We use z-buffer based voxelization method [9, 10] to get voxels of
3D models. The method stores the depth information from six views (namely, +x,
−x, +y, −y, +z and −z) of the 3D model, and checks whether the depth of each
voxel is between the value limits stored in z-buffer. To do this, three pairs of z-buffer
([x1, x2], [y1, y2], [z1, z2]) along X, Y and Z are created. Each pair of them stores depth
information of the model in one axis. Take X for example, x1 stores the smallest depth
value and x2 stores the largest value. It is intuitive to get depth value for the three pairs of
z-buffer by using orthographic projection operations. Given a voxel v(i, j, k), we convert
it to the z-buffer range as

(x, y, z) = (i, j, k) ·
depthmax − depthmin

N − 1
,

where [0, N) denotes the size of the model, [depthmin, depthmax] is the range of z-buffer.
Thus, voxel v(i, j, k) locates inside the model if and only if x1(j, k) ≤ x ≤ x2(j, k) and
y1(k, i) ≤ y ≤ y2(k, i) and z1(j, i) ≤ z ≤ z2(j, i). According to the above operations, we
obtain the voxelization results of the chair as shown in Figure 1.

Figure 1. Pre-processing method. Left: voxels after voxelization. Right:
blocks after combining connected adjacent voxels.

2.1.2. Combination. To decrease the number of blocks for fire simulation, we combine the
voxels to get larger blocks after voxelization. We start from a voxel and combine it with
its connected adjacent voxel along X. Thus, we may get several blocks in each line of X

axis. Next, we start from a block and combine it with its connected adjacent block along
Y and Z axis sequentially to make larger blocks. Figure 1 shows the combination results.
Observe that the voxels on the leg of the chair are combined to a single block finally.



ICIC EXPRESS LETTERS, PART B: APPLICATIONS, VOL.7, NO.8, 2016 1785

2.2. Fire model. We use FDS [1] for computing the dynamics of fire. Simulating fire
dynamics is complex because many models (e.g., hydrodynamic model, combustion model
as well as thermal radiation model) that govern the fire simulation should be considered.

The most important governing equations of fire simulation are a set of conservation
equations for mass, momentum and energy, etc. Another important model for fire simu-
lation is combustion. We use large eddy simulations (LES) and thus the mixture-fraction
based combustion model is adopted. More details about the fire model can be referred to
[1].

Figure 2. Ray-casting method. Left: light rays are cast from each pixel
on the screen to the data volume. Middle: the final color of the pixel is
obtained by accumulating optical properties of the sample points along the
light rays. Right: merge with the geometric model. The rays r1 and r2 will
be terminated at g1, g2 on geometric models.

2.3. Rendering. The ray-casting approach is a typical image-order approach. The
method computes the color of each pixel in the final image by casting rays into the
data volume. Specifically, given camera parameters and a pixel position, a light ray is set
up at first. Next, optical properties are accumulated along the light ray. It is executed
until the volume is traversed. Figure 2 shows the process. The start position of a light
ray is frontface coordinate Ps of volume bounding box, and the end positions Pe are the
backface coordinates. The ray direction is d = Pe − Ps. Thus, each sample point on the
light ray is calculated by P = Ps + delta × d where delta is the step length. The scalar
value at this position is looked up from the volume data and is converted to color Csrc

and opacity αsrc. Finally, accumulated color Cdst and opacity αdst are updated according
to

Cdst = Cdst + (1 − αdst)Csrc αdst = αdst + (1 − αdst)αsrc.

2.3.1. Virtual endoscopy. Fire simulation requires rendering the simulation results from
the agent’s eyes because most agents are located in the volume. When moving the view-
point into the volume data, the near clipping plane intersects with the volume boundary
and the start positions on the frontface of volume boundary are lost which leads to holes
in the final animation results. Figure 3 gives an example.

To address the above problem we use virtual endoscopy technology to fill up the hole.
We set the starting position of the light rays as points on the near clipping plane as shown
in the following algorithm [12].

Step 1: Set the near clipping plane as the starting positions of the light rays.
Step 2: Calculate position of first backface in the ray direction.
Step 3: Calculate position of first frontface in the ray direction.
Step 4: Start the ray from the first frontface if it is nearer than the first backface.

2.3.2. Merge with the environment. Fire often happens inside a building or a factory
which contains a lot of 3D models in the environment. To make the rendering results more
realistic, we are required to merge the volume data with the 3D models in the scenario.



1786 G. ZHANG, L. LV, D. LU, Y. WANG, D. LU AND X. MENG

Figure 3. Results with holes and after filling holes. Left: starting image
with a hole. The rendered frontface which provides the start positions of the
rays is intersected with the data volume. Thus, it becomes invisible in the
interaction location and results in a hole. Middle left: render results. The
lost starting positions lead to a hole in the final image. Middle right: correct
starting image after filling holes. The starting positions are replaced with
corresponding positions of the near clipping plane. Right: correct rendering
results when the camera is located in the data volume.

Figure 4. Rendering fire in a 3D environment. Left: 3D environment
model. Middle left: z-buffer of the 3D model. Middle right: results before
considering the rays’ end positions. Right: results after considering the
rays’ end positions.

Similar to the procedure of filling holes, merging with the environment is straightforward.
The only difference is that the end positions of the rays should stop in front of the obstacle.

We use depth comparison method to complete this task efficiently. The depth value of
the 3D environment and backface of the bounding geometry can be obtained by rendering
them to the z-buffer respectively. Next, we compare theses depth values. If the depth
value of the 3D environment is smaller than that of the backface, the end position should
be set as the respective points on 3D geometry model. See Figure 2, r1 and r2 will be
terminated at g1 and g2. Figure 4 shows the rendering results in a 3D environment.
Observe that errors appeared if we do not consider the end position of the light rays.

2.3.3. GPU-based implementation. Implementing ray-casting algorithm on GPU is strai-
ghtforward because of the inherent parallelism of the method. In ray-casting algorithm,
a single ray is cast into the volume for each pixel on screen or the final image. Then the
volume data is re-sampled at discrete positions along the ray. By means of the transfer
function the scalar data values are mapped to optical properties. As for GPU-based
implementation, we define kernel functions to compute the pixel’s color. Each kernel
function calculates the color of a pixel on the screen. Since each thread has unique ID, it
can be used to locate the specific pixel on the screen. Therefore, by executing the kernel
function in parallel, the implementation on GPU can speed up ray-casting algorithm
significantly.

3. Results. The fire simulation in this paper is executed on a PC with Intel Quad-
cores/4 threads CPU. We separate our experiments into two parts. In the first part we



ICIC EXPRESS LETTERS, PART B: APPLICATIONS, VOL.7, NO.8, 2016 1787

test the performance of the fire simulation system and in the second part we exhibit the
fire simulation results.

3.1. Performance. Numerical computation in FDS consumes large portion of resources.
We set the fire source at the center of a room and we create a grid whose resolution is
246 × 246 × 63. In Table 1, we show the performance of the numerical computation. A
10 minutes fire propagation result consumes about 15890 seconds (approximately 4.41
hours) for computation. We also run the parallel version of FDS for this example. It
takes 8463 seconds for computing fire motion when using 2 cores and 5045 seconds when
using 4 cores. The speedup gained from the above example is also shown in Table 1. The
value is close to the ideal value because the fire simulation in this paper is a computation-
intensive task and the communication cost is rather small compared to the expensive
numerical computation.

Table 1. Performance of the numerical computation in fire simulation

Number of cores Simulation time Computation time Speedup
1 600 15890 −

2 600 8463 1.88
4 600 5045 3.15

0

10

20

30

40

50

800x600 1280x1024

41

18

35

15

Nvidia GTX750TI

108108 cells 214272 cells

0

10

20

30

40

50

800x600 1280x1024

45

34

42

32

Nvidia GTX960

108108 cells 214272 cells

Figure 5. Performance of fire rendering algorithm. Left: frame rates on
Nvidia GTX750TI. Right: frame rates on Nvidia GTX 960.

We also test the efficiency of our photo-realistic fire rendering algorithm. We use
GPU-based ray-casting algorithm to improve the efficiency. Most of our examples can
achieve interactive frame rate (e.g., more than 15 frames/second). Figure 5 shows the
performance of our fire rendering algorithm with Nvidia GTX750TI and GTX960. Note
that X axis denotes different output image resolution and Y axis denotes the frame rate.
Two examples are tested and the grid cells numbers of each example are 108108 and 214272
respectively. Results show that the performance of fire rendering is influenced by the
resolution of the final images significantly. When the images resolution are set 1024×768,
the frame rate achieves 41 frames/second on GTX750TI. When the image resolution
increases to 1440 × 900, the frame rate reduces to 18 frames/second. Furthermore, the
performance of different graphics card also affects the rendering efficiency. Results show
that GTX960 obtains higher frame rate than GTX750TI. Since all frame rates exceed 15
frames per second, we can see the fire prorogation in real-time after using GPU-based
speeding up method.



1788 G. ZHANG, L. LV, D. LU, Y. WANG, D. LU AND X. MENG

Figure 6. Simulation results. Left: fire rendering in Smokeview. Right:
fire rendering with ray-casting algorithm.

Figure 7. Rendering results. Left: rendering results before merging with
the environment. Right: rendering results after merging with the environ-
ment.

3.2. Simulation results. FDS provides basic rendering mechanism based on a software
named Smokeview. The results demonstrate the motion of the fire and smoke visually.
It allows non-professional person to understand the propagation of fire and smoke intu-
itively. However, visual effects are not pleasing since these two software only focus on the
simulation accuracy. Figure 6 shows the rendering results of Smokeview and our method
respectively. We achieve better visualization results using ray-casting algorithm. Figure 7
shows the photo-realistic rendering results before and after merging with the environment
in our system. The visual pleasing results produced in our method can provide realistic
experience for skill learning in dangerous situation.

4. Conclusions. We have presented a fire simulation system for virtual safety training
in fires. To provide realistic experience for trainee in emergency situations, we use the
famous FDS software in fire research to compute fire data and ray-casting algorithm in
computer graphics area to render the simulation data. The fire results with high degree
of visual realism improve the effectiveness of skills learning in fires significantly. As for
future work, we would like to extend some numerical computation on GPU to further
improve the simulation efficiency.

Acknowledgment. This work is partially supported by Project supported by the Na-
tional Natural Science Foundation of China (Nos. 61202225, 61303157, 61303007, 61402
270, 61402269, 61572299), Shandong Provincial Natural Science Foundation (ZR2014FQ
009, ZR2015FQ009), Research Fund for Excellent Young and Middle-aged Scientists of
Shandong Province (BS2013DX044), Shandong Province Higher Educational Science and
Technology Program (J13LN13).



ICIC EXPRESS LETTERS, PART B: APPLICATIONS, VOL.7, NO.8, 2016 1789

REFERENCES

[1] K. McGrattan, R. McDermott, C. Weinschenk et al., Fire Dynamics Simulator Technical Reference
Guide Volume 1: Mathematical Model, NIST Special Publication 1018 Sixth Edition, Gaithersburg,
Maryland, 2014.

[2] T. Korhonen, Fire dynamics simulator with evacuation: FDS+Evac technical reference and user’s
guide, Technique Report, VTT Technical Research Centre of Finland, 2014.

[3] E. Kuligowski, R. Peacock and B. Hoskins, A Review of Building Evacuation Models, Gaithersburg,
Maryland, 2005.

[4] S. Sato, T. Morita, Y. Dobashi et al., A data-driven approach for synthesizing high-resolution ani-
mation of fire, Proc. of the Digital Production Symposium, pp.37-42, 2012.

[5] D. Nguyen, R. Fedkiw and H. Jensen, Physically based modeling and animation of fire, ACM Trans.
Graphics, vol.21, no.3, pp.721-728, 2002.

[6] J. Hong, T. Shinar and R. Fedkiw, Wrinkled flames and cellular patterns, ACM Trans. Graphics,
vol.26, no.3, 2007.

[7] C. Horvath and W. Geiger, Directable, high-resolution simulation of fire on the GPU, ACM Trans.
Graphics, vol.28, no.3, 2009.

[8] J. Chadwick and D. James, Animating fire with sound, ACM Trans. Graphics, vol.30, no.4, 2011.
[9] E. Karabassi, G. Papaioannou and T. Theoharis, A fast depth-buffer-based voxelization algorithm,

Journal of Graphics Tools, vol.4, no.4, pp.5-10, 1999.
[10] G. Zhang, D. Zhu, X. Qiu et al., A scene processing method for fluid simulation, Journal of Computer-

Aided Design & Computer Graphics, vol.22, no.8, pp.1360-1365, 2010.
[11] D. Anderson, J. Tannehill and R. Pletcher, Computational Fluid Mechanics and Heat Transfer,

Hemisphere Publishing Corporation, Philadelphia, Pennsylvania, 1984.
[12] H. Scharsach, Advanced Raycasting for Virtual Endoscopy on Consumer Graphics Hardware, Master

Thesis, Universität of Wien, 2005.


