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Abstract. To deal with computerized intractability and imprecise estimates of the stan-
dard interacting multiple model (IMM) algorithm, a novel IMM algorithm is presented in
this paper. First we introduce the adaptive adjustment coefficient to simplify calculation
of the Markov transition probability matrix. Afterwards the covariance matrix of process
noise is modified to improve precision of estimates when target is maneuvering. Finally
a typical scenario of maneuvering target tracking is performed to validate performance of
the proposed IMM algorithm. Simulation results show that the proposed IMM algorithm
can complete maneuvering target tracking with better efficiency and reliability.
Keywords: Interacting multiple model, Maneuvering target, Kalman filter, Transition
probability

1. Introduction. The interacting multiple model (IMM) algorithm has perfect tracking
performance regarding to maneuvering target tracking, which can estimate the dynamic
state of targets with many motion models [1,2]. Although the standard IMM algorithm is
widely used in various applications, there are some inherent defects in calculation of the
Markov transition probability matrix and the process noise.

Recently many scholars have studied the IMM algorithm with a great deal of success
and many papers have been published in important international journals [3-6]. In [3]
an adaptive IMM algorithm was designed to complete integration of inertial navigation
system/global positioning system data using a limited number of subfilters formed based
on the rough values obtained from fuzzy adaptive Kalman filter (KF). In [4] the fuzzy
adaptive KF and the standard IMM algorithm were integrated to estimate various states.
A modified IMM algorithm in [5] was constructed for maneuvering occurrence and switch-
ing initialization. In [6] a fuzzy adaptive IMM algorithm was put forward to adjust model
transition probability by fuzzy reasoning in order to adaptively change motion model set.
However these works all involve fuzzy theory, which bring about extra computational
complexity. In addition, the precision of state estimates should be further improved when
the target is maneuvering.

Aiming at the above problems, we present a novel IMM algorithm for maneuvering
target tracking in this note. The main contributions of this work are summarized as: i)
the calculation of the Markov transition probability matrix is simplified with the adaptive
adjustment coefficient; ii) the process noise is regulated in order to enhance the estima-
tion precision when the target is maneuvering. The remainder of this note is as follows.
Section 2 presents problem definitions of the standard IMM algorithm. In Section 3, the
principle of the novel IMM algorithm is proposed. The implementation of the proposed
IMM algorithm is presented in Section 4. Section 5 shows the numerical study to vali-
date tracking performance of the proposed IMM algorithm. In Section 6, we draw the
conclusions with the future work.
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2. Problem Definitions. Assume Xk and Zk are the state vector and the measurement
vector respectively, then the equations of the state and measurement are given by

Xk = Fk|k−1Xk−1 + ΓkWk (1)

Zk = HkXk + Vk (2)

In (1) and (2), Fk|k−1 and Hk are the state transition matrix and the measurement
matrix, Γk is the state noise input matrix, and Wk and Vk are the state noise vector and
the process noise vector with the following statistic characteristics [7]:{

E [Wk] = 0
E
[
WkW

T
k

]
= Rk

,

{
E [Vk] = 0
E
[
VkV

T
k

]
= Qk

where E [·] denotes the mathematical expectation, (·)T denotes the transpose of matrix,
and Rk and Qk are the covariance matrices of the state noise and the process noise
respectively.

As we know, the standard IMM algorithm requires many models to match the dynamic
states of maneuvering target. The tracking performance depends on the set of mod-
els. Therefore, the number of models can lead to additional computational cost in the
measurement update step [8]. In addition, Vk varies with the dynamic state of targets.
However, the standard IMM algorithm considers Qk as a constant during the tracking
process and cannot represent the actual dynamics of maneuvering target.

3. Principle of the Proposed IMM Algorithm. Assume the transition probability

matrix from models m
(j)
k−1 to m

(i)
k is determined by the Markov transition probability π

(ji)
k−1,

we have

Π
(ji)
k−1 =

 π
(11)
k−1 · · · π

(1i)
k−1

...
. . .

...

π
(j1)
k−1 · · · π

(ji)
k−1

 (3)

Define the change rate of the posterior probability between two adjacent scans as

∆
(ji)
k = µ

(i)
k

/
µ

(j)
k−1 (4)

where µ
(j)
k−1 and µ

(i)
k are the posterior probability densities of m

(j)
k−1 and m

(i)
k . There is

∆
(ji)
k > 1 when µ

(i)
k > µ

(j)
k−1, which means the posterior probability density from other

models at the previous scan to the current model is increasing, and vice versa.

According to (3) and (4), the updated Markov transition probability π
(ji)
k is given by

π
(ji)
k = ∆

(ji)
k π

(ji)
k−1

/
l∑

i=1

∆
(ji)
k π

(ji)
k−1 (5)

In (5), the adaptive adjustment coefficient ρ
(ji)
k is defined as

ρ
(ji)
k = ∆

(ji)
k

/
l∑

i=1

∆
(ji)
k π

(ji)
k−1 (6)

Combining (6) with (5), we get the sum of π
(ji)
k .

l∑
i=1

π
(ji)
k =

l∑
i=1

ρ
(ji)
k π

(ji)
k−1 = 1 (7)

Then π
(ji)
k satisfies the condition of the Markov transition probability matrix because

the sum of π
(ji)
k in each row of Π

(ji)
k−1 equals 1.

Subsequently we adjust Vk to represent the dynamic state of targets. It is necessary
to reduce the tracking error with the increasing Vk when the target is maneuvering. On
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the other hand, we should enhance the tracking precision with the decreasing Vk when

the target keeps non-maneuvering dynamics. Assume µ
(j)
max,k−1 is the maximum value of

µ
(j)
k−1, then the covariance matrix of Vk is given by

Q
(i)
k =


(
1 − µ

(j)
max,k−1

)2

Q
(j)
k−1, i = j(

1 + µ
(j)
max,k−1

)2

Q
(j)
k−1, i ̸= j

(8)

Note that m
(j)
k−1 can match the current state and Q

(i)
k can be taken to the minimal value

when m
(i)
k and m

(j)
k−1 represent the same dynamic models. Otherwise Q

(i)
k is set to the

maximal value under the condition of i ̸= j. Therefore, the different values of Q
(i)
k can

effectively meet various levels of maneuvers.

4. Implementation of the Proposed IMM Algorithm. The KF can yield perfect
tracking performance for non-maneuvering target with the constant velocity (CV). How-
ever, the KF has worse precision when the target is maneuvering to some extent, such
as the constant turn (CT) dynamics [9]. By comparison, the unscented KF (UKF) is
competent because the unscented transform (UT) is easy to approximate nonlinear dy-

namics of targets. Considering the modified parameters π
(ji)
k and Q

(i)
k , we present the

implementation of the proposed IMM algorithm that combined the KF with the UKF in
one cycle.

Step 1. Model interaction. Let the combined state X
(oi)
k−1|k−1 and its covariance

P
(oi)
k−1|k−1 be

X
(oi)
k−1|k−1 =

2∑
j=1

µ
(ji)
k−1X

(j)
k−1|k−1 (9)

P
(oi)
k−1|k−1 =

2∑
j=1

µ
(ji)
k−1

(
P

(j)
k−1|k−1 +

(
X

(j)
k−1|k−1 − X

(oi)
k−1|k−1

)(
X

(j)
k−1|k−1 − X

(oi)
k−1|k−1

)T
)

(10)

Step 2. Time update. For the KF, the time-updated state X
(1)
k|k−1 and its covariance

P
(1)
k|k−1 are

X
(1)
k|k−1 = F

(1)
k|k−1X

(1)
k−1|k−1 + Γ

(1)
k−1W

(1)
k−1 (11)

P
(1)
k|k−1 = F

(1)
k|k−1P

(1)
k−1|k−1

(
F

(1)
k|k−1

)T

+ Γ
(1)
k−1Q

(1)
k−1

(
Γ

(1)
k−1

)T

(12)

We have the time-updated state X
(2)
k|k−1 and its covariance P

(2)
k|k−1 using the UKF

X
(2)
k|k−1 =

2nX∑
n=0

wnξn,k|k−1 (13)

P
(2)
k|k−1 =

2nX∑
n=0

wn

(
ξn,k|k−1 − X

(2)
k|k−1

)(
ξn,k|k−1 − X

(2)
k|k−1

)T

+ Γ
(2)
k−1Q

(2)
k−1

(
Γ

(2)
k−1

)T

(14)

where ξn,k|k−1 is the nth sigma sampling point (n = 0, · · · , 2nX) and wn is the related
weight.

According to (8), we can get the time-updated Q
(i)
k for the next cycle.

Step 3. Measurement update. The measurement-updated state X
(i)
k|k and its co-

variance P
(i)
k|k are given by

X
(i)
k|k = X

(i)
k|k−1 + K

(i)
k

(
Zk − H

(i)
k X

(i)
k|k−1

)
(15)
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P
(i)
k|k = P

(i)
k|k−1 − K

(i)
k

(
H

(i)
k P

(i)
k|k−1

(
H

(i)
k

)T

+ R
(i)
k

)(
K

(i)
k

)T

(16)

where the Kalman gains of the KF and the UKF are respectively defined as

K
(1)
k = P

(1)
k|k−1

(
H

(1)
k

)T
(

H
(1)
k P

(1)
k|k−1

(
H

(1)
k

)T

+ R
(1)
k

)−1

(17)

K
(2)
k =

(
2nX∑
n=0

wn

(
ξn,k|k−1 − X

(2)
k|k−1

)(
ξn,k|k−1 − X

(2)
k|k−1

)T
)

×

(
2nX∑
i=0

wn

(
Zk − H

(2)
k X

(2)
k|k−1

)(
Zk − H

(2)
k X

(2)
k|k−1

)T

+ R
(2)
k

)−1 (18)

The likelihood function L
(i)
k is given by

L
(i)
k =

(
2π

∣∣∣∣H (i)
k P

(i)
k|k−1

(
H

(i)
k

)T

+ R
(i)
k

∣∣∣∣)− 1
2

× exp

(
−1

2
V T

k

(
H

(i)
k P

(i)
k|k−1

(
H

(i)
k

)T

+ R
(i)
k

)−1

Vk

) (19)

Considering the parameters ∆
(j)
k and π

(ji)
k from (4) and (5), we get µ

(i)
k

µ
(i)
k = L

(j)
k

r∑
j=1

π
(ji)
k−1µ

(j)
k−1

/
r∑

j=1

L
(j)
k

r∑
j=1

π
(ji)
k−1µ

(j)
k−1 (20)

Step 4. State estimation. The estimated state X̂k|k and its covariance P̂k|k are
given by

X̂k|k =
2∑

i=1

µ
(i)
k X

(i)
k|k (21)

P̂k|k =
2∑

i=1

µ
(i)
k

(
P

(i)
k|k +

(
X

(i)
k|k − Xk|k

)(
X

(i)
k|k − Xk|k

)T
)

(22)

5. Numerical Study and Discussions. This section presents the numerical study to
validate the proposed IMM algorithm for maneuvering target tracking. Define the initial
dynamic state of the target as X0 = [5, 20, 5, 10]T, the surveillance period is 50 s and
the sampling period is 1 s. The target moves from initial position (5, 5) m, the initial
model probabilities of the CV and CT motion models are equivalent, and the dynamic
states are as follows: i) the target keeps the CV motion with the velocity of (20, 10) m/s
during 1st ∼ 10th s, 21st ∼ 30th s and 41st ∼ 50th s; ii) the target follows an anticlockwise
5 ◦/s CT with the velocity of (20, 10) m/s during 11th ∼ 20th s; iii) the target follows a
clockwise 5 ◦/s CT with the velocity of (20, 10) m/s during 31st ∼ 40th s. The related
parameters in (1) and (2) are as follows:

R
(i)
k =

[
10 0
0 10

]
, Q

(i)
0 =

[
100 0
0 100

]
, Π

(ji)
0 =

[
0.9 0.1
0.1 0.9

]
In addition, the root of mean square error (RMSE) is as a valid measure in this scenario.

Figure 1 shows the target track and estimates. In this figure, we note that the proposed
IMM algorithm estimates the target in x and y positions accord with the true trajectory
even if the target has many switching periods of dynamic states. For comparison, the
standard IMM algorithm has position deviations in x and y positions to a certain extent.
Figure 2 demonstrates the probability of models of the proposed IMM algorithm. It can
be seen that the probability of the CV dynamic model or the CT motion model is greater
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Figure 1. Target track and estimates

Figure 2. Probability of models

Table 1. Comparison of tracking performance

RMSE of x
position (m)

RMSE of y
position (m)

running time (s)

Standard IMM algorithm 6.112 4.736 2.719
Proposed IMM algorithm 1.397 1.168 2.035

in the corresponding period. Two model probabilities are equivalent when the CV and
CT dynamic states are switching. It is obvious that the sum of two model probabilities
equals 100%. Figure 3 shows the transition probability of models using the proposed
IMM algorithm. As seen, during the CV motion stage, the transition probability of the
CV motion model is the greatest. In addition, the transition probability from the CT
motion model to the CV model is increasing, and the peaks can be achieved on 10th s,
30th s and 50th s. On the other hand, we can arrive at the similar conclusion in the CT
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Figure 3. Transition probability of models

Figure 4. RMSE of x and y positions

motion stage. The transition probability of the CT motion model is the greatest and the

peaks can be obtained on 20th s and 40th s. The reason can be explained that π
(ji)
k is

determined by ρ
(ji)
k , which approximates the dynamic state and presents the state change

when the model is switching. Figure 4 demonstrates the RMSE of x and y positions of
two IMM algorithms. It can be seen that the performance of the standard IMM algorithm
is worse because it exaggerates the biased position especially when the dynamic state is

changing. As for the proposed IMM algorithm, it adaptively adjusts Q
(i)
k to meet the

change of target maneuvers and gets rid of the assumption of the white Gaussian noise
with zero mean in the standard algorithm. Then the RMSE of x and y positions is small
whether the motion state is maneuvering or non-maneuvering. Finally Table 1 shows
the comparison results of tracking performance with the average values of the RMSE of
x and y positions and the running time. It is reported that the parameters with the
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proposed IMM algorithm reduce by 77.14%, 75.33% and 25.16% respectively compared
with the standard IMM algorithm. As a result, the substantial improvement of tracking
performance is achieved using the proposed IMM algorithm.

6. Conclusions. The challenges are to handle computerized intractability and impre-
cise estimates of the standard IMM algorithm. We present a novel IMM algorithm to
track maneuvering target which employed the improved Markov element and the mod-
ified covariance matrix of process noise. The numerical study shows that the proposed
IMM algorithm has a significant improvement in both computing time and state estimates
with promising tracking results. In the future research of this work, we plan to reduce
computational complexity as much as possible under the current tracking precision.
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