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Abstract. Wireless Multimedia Sensor Networks (WMSN) technology has been widely
used in many fields. However, the huge amount of data that need to be processed has
a serious impact on the effectiveness of WMSN. Compressive Sensing (CS) can solve
this problem effectively. Video reconstruction method becomes the core problem when
it comes to introducing CS into WMSN. In this paper, we proposed a WMSN video
reconstruction method based on modified Gradient Projection for Sparse Reconstruction
(GPSR). Firstly, low-resolution video frames can be reconstructed via matrix inverse
transformation. A new measurement matrix is proposed for the convenience of inverse
transformation. Then, motion vectors among video frames can be acquired from the low-
resolution video frames. At last, high-resolution video can be reconstructed by applying
modified GPSR with the motion vectors as constraints. Experimental results show that
the proposed algorithm can effectively improve the quality of the reconstructed video and
the execution time can be reduced. In addition, a rough description of the WMSN scene
can be acquired in real-time.
Keywords: WMSN, Video reconstruction, Compressive sensing, Motion vector, GPSR

1. Introduction. WMSN is widely used in various kinds of fields. Video, as an important
data form in WMSN, consumes a lot of computation resource. However, the computation
resource of WMSN nodes is limited. The recently developed CS theory provides a new idea
for solving the above problem [1]. CS theory points out that the observation of original
signal can be acquired by sparse projection. How to construct a robust reconstruction
algorithm with better effect and lower computational complexity has been the essential
issue.

Recently, many classical signal reconstruction algorithms have been proposed, such as
Matching Pursuits (MP) [2,3] and Subspace Pursuit (SP) [4]. These algorithms have
low computational complexity, but the reconstruction effect is not satisfactory. For more
superior effect, convex optimization algorithm is proposed, such as Total Variation (TV)
[5] and GPSR [6]. In [7], a novel image reconstruction algorithm based on intra prediction
and total variation model is proposed for improving the reconstruction performance, but
it takes a lot of time to reconstruct the signal. Besides the most popular methods we
mentioned above, the iterative reweighting algorithm becomes a more efficient way to
enhance the reconstruction quality [8]. However, that each weighting factor must be
iteratively updated makes the algorithm complicated. What is worse, we cannot get the
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signal content intuitively before the reconstruction has been completed, which is negative
to WMSN video applications.

Under the research of CS theory, we find that the video reconstruction can be divided
into two stages. First, the preliminary results can be achieved by applying inverse trans-
formation to CS measurements. Then, it may offer more information for subsequent
processing to further reconstruct signal with high quality. Once the two-stage reconstruc-
tion algorithm is applied, a rough description of the WMSN scene can be acquired on the
spot, and the computational complexity can be greatly reduced, which guarantees real-
time monitoring of WMSN. GPSR algorithm can achieve accurate reconstruction with
high probability compared to other algorithms [9], but it takes a lot of time to recon-
struct the signal. According to the above analysis, this paper puts forward a two-stage
reconstruction algorithm based on Modified GPSR for WMSN video.

The major contribution of this paper is twofold: 1) We design a measurement matrix
which can realize inverse transformation quickly, so that a rough description of the WMSN
scene can be acquired in a short time; 2) Our method is among the first to impose motion
vector as constraints in the GPSR iteration process. The CS theory is introduced in
Section 2. WMSN video reconstruction method based on Modified GPSR is presented in
Section 3. Section 4 reports experimental results and discussions. Conclusions are given
in Section 5.

2. Compressive Sensing Theory. Supposing the original signal x ∈ R
N×1 is a discrete

signal, ψ ∈ R
N×N is an orthogonal transform base, and then x can be expressed as x = ψα,

where α is the transform coefficient in sparse domain ψ = [ψ1, ψ2, . . . , ψN ], and ψi is a
column vector with N elements.

We can implement non-adaptive linear observation by selecting the appropriate mea-
surement matrix to obtain measurements y:

y = Φx = Φψα (1)

where Φ = {φ1, φ2, . . . , φM}T is a M × N measurement matrix. Due to M ≪ N , the
reconstruction of x from y is generally ill-posed [10]. However, the compressive sensing
theory points out that as long as x is sparse in some domains, we can reconstruct the
original signal from the obtained measurements by solving l1-norm optimization:

min
α

‖α‖
1
, s.t. y = Φψα (2)

3. WMSN Video Reconstruction Based on Modified GPSR. In order to apply the
above-mentioned theory to actual video system, researchers in Rice University designed
Single Pixel Camera (SPC) [11], which largely decreases the amount of data that need to
be acquired. If we can employ SPC as video capture unit in WMSN, the amount of data
can be reduced and the lifecycle can be extended in the network. As a research object,
this paper mainly concentrates on the video captured by SPC in WMSN.

3.1. Video data acquisition model of WMSN. In WMSN, the compressive measure-
ments that SPC captured at the sample instant t can be modeled as yt = 〈φt, xt〉 + et,
where φt is the measurement matrix, xt is the scene at sample instant t, and et repre-
sents measurement noise. Assuming that there are A = a× a pixels in each frame, then
xt ∈ R

A×1.
Suppose that we rewrite our time-varying scene xt for a window of Q consecutive sample

instants as xt = S + ∆xt. Here, S is the static component (assumed to be invariant for
the considered window of Q samples), and ∆xt = xt − S is the variant component. We
use notation y1:Q to represent the matrix made of all measurements during the window
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Q, and define zt = 〈φt,∆xt〉, which represents the temporal-approximation error caused
by assuming the scene remains static for Q samples, then

y1:Q = [y1, y2, . . . , y3]
T = ΦS + z1:Q + e1:Q (3)

where e1:Q is measurement error, and Φ ∈ R
Q×A is measurement matrix, whose t-th

column is measurement vector φt.
The following will discuss the errors of spatial down-sampling to time-invariant compo-

nent S. We adopt SL (SL ∈ R
AL×1) to represent the spatial down-sampling of S, where

AL = aL × aL (AL < A). We define H and L as up-sampling and down-sampling opera-
tors, respectively. According to the definition, they satisfy H ∈ R

A×AL and L ∈ R
AL×A.

Then Equation (3) can be rewritten as follows:

y1:Q = ΦHSL + Φ(I −HL)S + z1:Q + e1:Q (4)

Here, the first item can be seen as the measurements of static image, and the others can
be seen as measurement error.

3.2. Reconstructing the low-resolution video. In order to analyze the trade-off that
arises from the static scene hypothesis and down-sampling procedure, we consider the
scenario where the effective matrix ΦH is of dimension Q× AL (Q ≥ AL). If the matrix

ΦH has full rank, then we can obtain an estimate ŜL of the low-resolution static scene as:

ŜL = (ΦH)−1y1:Q = SL + (ΦH)−1(Φ(I −HL)S + z1:Q + e1:Q) (5)

where (·)−1 denotes the pseudo inverse. From Equation (5), we can reconstruct the low-
resolution video under the hypothesis that the scene remains unchanged in the interval
Q.

3.3. Design of measurement matrix. We note that there is a special requirement
when obtain ŜL: the matrix ΦH is reversible. However, the measurement matrix com-
monly used in CS, such as i.i.d. Gaussian matrices, right multiplying them with H often
results in an ill-conditioned matrix. In order to improve the accuracy of the low-resolution
video frames, we design a novel measurement matrix Φ. It meets the condition that
M = ΦH , where M is a Q×Q dimension Hadamard matrix. Hadamard matrix is chosen
as the basis of transformation because of its low complexity of inverse transformation.
The measurement matrix we designed can be represented as the following form:

Φ = ML + Γ (6)

where Γ is an auxiliary matrix that obeys the following constraints: 1) The choice of
auxiliary matrix should guarantee Φ ∈ {+1,−1}; 2) The measurement matrix Φ should
satisfy the Restricted Isometry Property (RIP) [12]; 3) Γ should be chosen so that ΓH = 0.

3.4. Extracting motion vector based on optical flow. On the basis of an appropriate
measurement matrix, we can easily reconstruct the low-resolution video frames, and then
compute motion vector between consecutive frames based on optical flow. Assuming that
Ŝi

L and Ŝ
j
L are the i-th and j-th low-resolution video frames, respectively, and they are

consecutive. Ŝi = HŜi
L and Ŝj = HŜ

j
L are the up-sampling results of the above low-

resolution video frames. Then, optical flow between the two frames can be written as:

Ŝi(x, y) = Ŝj(x+ ux,y, y + vx,y) (7)

where Ŝi(x, y) denotes the pixel (x, y) in the a× a plane of Ŝi. ux,y and vx,y correspond
to the translation of the pixel (x, y) between frame i and j.
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3.5. Reconstructing the high-resolution video. After we get the motion vector, we
can transform the non differentiable l1-norm minimization problem to a differentiable
objective function, and then reconstruct the high-resolution video by the gradient pro-
jection iteration. In the process of reconstruction, we consider the following two con-
straints: the consistency with the acquired CS measurements, and the estimated optical
flow constraints between consecutive frames. Together, we arrive at the flowing convex
optimization problem:

min
α

‖α‖
1
, s.t. y = Φψα; αi(x, y) = αj(x+ ux, y + vy) (8)

The above problem can be solved by the standard convex optimization techniques. Setting
a threshold, Equation (8) can be converted into:

min
α

‖α‖
1
, s.t. ‖y − Φψα‖

2
≤ σ1; ‖αi(x, y) − αj(x+ ux, y + vy)‖2

≤ σ2 (9)

The parameters σ1 and σ2 are indicative of the measurement noise and the inaccuracies in
the brightness constancy, respectively. In conclusion, the process of the proposed method
can be shown in Figure 1.

Figure 1. The process of the proposed method

4. Experimental Results and Discussions. This section describes some experiments
to testify the performance of the method mentioned above. The simulation results were
generated from two videos of 256 × 256 pixels with 256 frames. One of them is an
“Intelligent vehicle video”, and the other is “Traffic monitoring video”. The low-resolution
video has a spatial resolution of 64 × 64 pixels. A Gaussian white noise with a standard
deviation of 10 was added to the compressive measurements. The maximum number of
iterations is set to 100. For comparison, the original GPSR algorithm is used to reconstruct
the same video with the same noise level.

In our experiment, the two videos are averagely divided into three parts, respectively.
One frame is selected from each part for display. The original video of “Intelligent ve-
hicle video” and “Traffic monitoring video” are shown in Figure 2(a) and Figure 3(a),
respectively. The reconstruction results of “Intelligent vehicle video” are shown in Figure
2. The reconstruction results of “Traffic monitoring video” are shown in Figure 3. Table
1 tabulates the running time of low-resolution reconstruction, high-resolution reconstruc-
tion and GPSR. For more rigorous effects, each video has been processed three times on
the same computer.

Through analyzing Figure 2 and Figure 3, we can find: 1) The low-resolution video,
an intermediate of our method, has PSNR of no less than 20dB. It can provide a rough
description of the scene; 2) The proposed method achieves better reconstruction perfor-
mance in terms of PSNR and video details to the comparison. From Table 1, it is clear
that the low-resolution video can be reconstructed in no more than 7 seconds with the
proposed algorithm. As for the high-resolution reconstruction, the proposed algorithm
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(a) (b)

(c) (d)

Figure 2. Reconstruction results of “Intelligent vehicle video”: (a) original
video, (b) proposed method (low-resolution, PSNR: 21.12dB), (c) proposed
method (high-resolution, PSNR: 28.25dB), (d) GPSR (PSNR: 25.16dB)

(a) (b)

(c) (d)

Figure 3. Reconstruction results of “Traffic monitoring video”: (a) orig-
inal video, (b) proposed method (low-resolution PSNR: 20.38dB), (c) pro-
posed method (high-resolution PSNR: 26.51dB), (d) GPSR (PSNR:
25.38dB)

Table 1. Comparison of running time

Video
Running time (in seconds)

Low-resolution High-resolution GPSR

Intelligent vehicle
5.23 7538.64 7603.58
4.89 7536.29 7605.47
5.30 7584.22 7612.34

Traffic monitoring
6.47 8225.35 8548.78
6.21 8212.86 8553.45
6.59 8238.57 8498.43
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reduces execution time to some extent compared to GPSR. No matter from the visual
effect of PSNR or running time, it is noticeable that the proposed algorithm is supe-
rior to GPSR. Therefore, the proposed method is more suitable for the WMSN video
reconstruction.

5. Conclusions. This paper proposes an effective WMSN video reconstruction method.
This method includes a novel measurement matrix that enables the efficient reconstruction
of a low-resolution video. Meanwhile, the high-resolution video reconstruction can be
achieved by using convex optimization. Comparing with the original GPSR algorithm,
our method achieves better reconstruction quality, both in PSNR performance and in
visual result. In addition, a rough description of the WMSN scene can be acquired in
real-time and the execution time can be reduced. For future work, the performance of
our method may be further improved by using multi-frame optical-flow estimation.
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